A282773 Numbers n such that Bernoulli number B_{n} has denominator 498.
82, 574, 1066, 1394, 3034, 3362, 3854, 4838, 5494, 5822, 6478, 7462, 7954, 8282, 8774, 8938, 10414, 11234, 12218, 12382, 12874, 13694, 15826, 16154, 17302, 18614, 18778, 21074, 21238, 21566, 22058, 22222, 22714, 23206, 23534, 23698, 25174, 25502, 25994
Offset: 1
Keywords
Examples
Bernoulli B_{82} is 1677014149185145836823154509786269900207736027570253414881613/498, hence 82 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Von Staudt-Clausen theorem
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q,h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,498); # Alternative: filter:= n -> select(isprime,map(`+`,numtheory:-divisors(n),1)) = {2,3,83}: select(filter, [seq(i,i=82..10^5,82)]); # Robert Israel, Mar 07 2017
-
Mathematica
Select[82 Range[360], Denominator@ BernoulliB@ # == 498 &] (* Michael De Vlieger, Mar 07 2017 *)
Extensions
More terms from Michael De Vlieger, Mar 07 2017
Comments