A295587 Numbers k such that Bernoulli number B_{k} has denominator 13530.
40, 6680, 7880, 8920, 9080, 10280, 12520, 12680, 14120, 15320, 15560, 18280, 20840, 21640, 22760, 23480, 25720, 26440, 28040, 30040, 30280, 31880, 33080, 33560, 34520, 35240, 35480, 36280, 38680, 39640, 42040, 43880, 44360, 46120, 46520, 46840, 47240, 47720, 48520
Offset: 1
Examples
Bernoulli B_{40} is -261082718496449122051/13530, hence 40 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,13530); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 41}: select(filter, [seq(i, i=1..10^5)]);
-
Mathematica
Select[Range[50000],Denominator[BernoulliB[#]]==13530&] (* Harvey P. Dale, Jul 29 2025 *)
Comments