cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A083891 Number of divisors of n with largest digit = 4 (base 10).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 2, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Examples

			n=120, 3 of the 16 divisors of 120 have largest digit=4: {4,24,40}, therefore a(120)=3.
		

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083888(n) - A083889(n) - A083890(n) - A083892(n) - A083893(n) - A083894(n) - A083895(n) - A083896(n) = A083899(n) - A083898(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A277966(k) = 0.98827280431174433126... . - Amiram Eldar, Jan 04 2024

A277948 Squares whose largest decimal digit is 4.

Original entry on oeis.org

4, 144, 324, 400, 441, 1024, 1444, 2304, 2401, 10404, 14400, 23104, 32041, 32400, 33124, 40000, 40401, 44100, 101124, 102400, 103041, 110224, 114244, 121104, 131044, 144400, 203401, 204304, 213444, 230400, 232324, 240100, 300304, 301401, 421201, 1004004
Offset: 1

Views

Author

Colin Barker, Nov 05 2016

Keywords

Comments

A subsequence of A158082, in turn a subsequence of A000290.

Crossrefs

Cf. A000290 (the squares).
Cf. A277961 (square roots of these terms).
Cf. A277946, A277947, A295015, ..., A295019 (analog for largest digit = 2, 3, 5, ..., 9).
Cf. A058412, A058411, ..., A058474 and A136808, A136809, ..., A137147 for other restrictions on digits of squares.

Programs

  • Magma
    [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 4]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    Select[Range[1100]^2,Max[IntegerDigits[#]]==4&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==4, listput(L, n^2))); Vec(L)
    

Formula

a(n) = A277961(n)^2. - M. F. Hasler, Nov 12 2017
Intersection of A000290 and A277966. - M. F. Hasler, Nov 15 2017

A277964 Numbers whose largest decimal digit is 2.

Original entry on oeis.org

2, 12, 20, 21, 22, 102, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, 1002, 1012, 1020, 1021, 1022, 1102, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211, 1212, 1220, 1221, 1222, 2000, 2001, 2002, 2010, 2011, 2012, 2020, 2021, 2022
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

Number of terms less than 10^n is 3^n-2^n, i.e., A001047(n). - Chai Wah Wu, Nov 06 2016 [extended by Felix Fröhlich, Nov 07 2016]
Numbers n such that A054055(n) = 2. - Felix Fröhlich, Nov 07 2016

Crossrefs

Programs

  • GAP
    Filtered([1..2100],n->Maximum(ListOfDigits(n))=2); # Muniru A Asiru, Mar 01 2019
  • Maple
    N:= 6: # to get all terms of at most N digits
    R:= 2: B:= {1}: C:= {1,2}:
    for  d from 2 to N do B:= map(t -> (10*t,10*t+1),B);
    C:= map(t -> (10*t,10*t+1,10*t+2),C);
    R:= R, op(sort(convert(C minus B,list)))
    od:
    R; # Robert Israel, Nov 07 2016
  • Mathematica
    A277964Q = Max[IntegerDigits[#]] == 2 &; Select[Range[2000], A277964Q] (* JungHwan Min, Nov 06 2016 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n))==2, listput(L, n))); Vec(L)
    

A277965 Numbers whose largest decimal digit is 3.

Original entry on oeis.org

3, 13, 23, 30, 31, 32, 33, 103, 113, 123, 130, 131, 132, 133, 203, 213, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 1003, 1013, 1023, 1030, 1031, 1032, 1033, 1103, 1113, 1123, 1130, 1131, 1132
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

Number of terms less than 10^n is 4^n - 3^n. - Chai Wah Wu, Nov 06 2016

Crossrefs

Cf. A005061 (4^n - 3^n).
Cf. A106099 (subsequence of primes).

Programs

  • GAP
    Filtered([1..450],n->Maximum(ListOfDigits(n))=3); # Muniru A Asiru, Mar 01 2019
  • Mathematica
    A277965Q = Max[IntegerDigits[#]] == 3 &; Select[Range[1200], A277965Q] (* JungHwan Min, Nov 06 2016 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n))==3, listput(L, n))); Vec(L)
    

A283608 Numbers whose largest decimal digit is 5.

Original entry on oeis.org

5, 15, 25, 35, 45, 50, 51, 52, 53, 54, 55, 105, 115, 125, 135, 145, 150, 151, 152, 153, 154, 155, 205, 215, 225, 235, 245, 250, 251, 252, 253, 254, 255, 305, 315, 325, 335, 345, 350, 351, 352, 353, 354, 355, 405, 415, 425, 435, 445, 450, 451, 452, 453, 454
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 5.
Number of terms less than 10^n is 6^n - 5^n.
Subsequence of A011535. - David A. Corneth, Mar 25 2017
Prime terms are in A106097.

Crossrefs

Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), this sequence (k = 5), A283609 (k = 6), A283610 (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..500],n->Maximum(ListOfDigits(n))=5); # Muniru A Asiru, Feb 27 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 5];
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 5 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==5, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • PARI
    nxt(n) = {my(d = digits(n), i, j=0, t=0); forstep(i=#d,1,-1, if(d[i]!=5, j=i; break)); if(j>0, d[j]++; if(d[j]==5, for(k=j+1,#d,d[k]=0)); if(j<#d && d[j+1]==5, for(k=j+1,#d-1,d[k]=0)); for(k=1,j-1, if(d[k]==5,for(i=j+1, #d, d[i] = 0);break)), d = vector(#d+1); d[1]=1; d[#d]=5);sum(i=1, #d, d[i]*10^(#d-i))} \\ David A. Corneth, Mar 25 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 501) if max(digits(n)[1:])==5]) # Indranil Ghosh, Mar 19 2017
    

A283609 Numbers whose largest decimal digit is 6.

Original entry on oeis.org

6, 16, 26, 36, 46, 56, 60, 61, 62, 63, 64, 65, 66, 106, 116, 126, 136, 146, 156, 160, 161, 162, 163, 164, 165, 166, 206, 216, 226, 236, 246, 256, 260, 261, 262, 263, 264, 265, 266, 306, 316, 326, 336, 346, 356, 360, 361, 362, 363, 364, 365, 366, 406, 416, 426
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 6.
Number of terms less than 10^n is 7^n - 6^n.
Prime terms are in A106096.

Crossrefs

Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), A283608 (k = 5), this sequence (k = 6), A283610 (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..500],n->Maximum(ListOfDigits(n))=6); # Muniru A Asiru, Mar 01 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 6]
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 6 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==6, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 501) if max(digits(n)[1:])==6]) # Indranil Ghosh, Mar 19 2017
    

A283610 Numbers n whose largest decimal digit is 7.

Original entry on oeis.org

7, 17, 27, 37, 47, 57, 67, 70, 71, 72, 73, 74, 75, 76, 77, 107, 117, 127, 137, 147, 157, 167, 170, 171, 172, 173, 174, 175, 176, 177, 207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274, 275, 276, 277, 307, 317, 327, 337, 347, 357, 367, 370, 371, 372
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 7.
Number of terms less than 10^n is 8^n - 7^n.
Prime terms are in A106095.

Crossrefs

Cf. Sequences of numbers n whose largest decimal digit is k (for k = 1 - 9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), A283608 (k = 5), A283609 (k = 6), this sequence (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..380],n->Maximum(ListOfDigits(n))=7); # Muniru A Asiru, Feb 27 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 7]
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 7 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==7, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    [n for n in range(1, 401) if max(digits(n)[1:]) == 7]  # Indranil Ghosh, Mar 19 2017
    

A283611 Numbers whose largest decimal digit is 8.

Original entry on oeis.org

8, 18, 28, 38, 48, 58, 68, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 108, 118, 128, 138, 148, 158, 168, 178, 180, 181, 182, 183, 184, 185, 186, 187, 188, 208, 218, 228, 238, 248, 258, 268, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 308, 318, 328, 338, 348
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 8.
Number of terms less than 10^n is 9^n - 8^n.
Prime terms are in A106094.

Crossrefs

Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), A283608 (k = 5), A283609 (k = 6), A283610 (k = 7), this sequence (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..400],n->Maximum(ListOfDigits(n))=8); # Muniru A Asiru, Mar 01 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 8]
    
  • Maple
    f:= proc(n) local L;
      L:= convert(n,base,9);
      if not has(L,8) then return NULL fi;
      add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    map(f, [$8..1000]); # Robert Israel, Mar 27 2017
  • Mathematica
    Select[Range@ 350, Max@ IntegerDigits@ # == 8 &] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    isok(n) = vecmax(digits(n)) == 8; \\ Michel Marcus, Mar 25 2017
    
Showing 1-8 of 8 results.