A001515
Bessel polynomial y_n(x) evaluated at x=1.
Original entry on oeis.org
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
The first few Bessel polynomials are (cf. A001497, A001498):
y_0 = 1
y_1 = 1 + x
y_2 = 1 + 3*x + 3*x^2
y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 11.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- Wojciech Mlotkowski and Anna Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1968
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for related partition-counting sequences
See
A144301 for other formulas and comments.
Replace "sets" with "lists" in comment:
A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
-
[(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
-
[sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
A144416
a(n) is the total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3, for 0 <= k <= 3n.
Original entry on oeis.org
1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, 25942945219747, 8394104851717686, 3395846808758759686, 1679398297627675722593, 996789456118195908366641, 699283226713639676370419067, 572385833490097906671186099971, 540635257271794961275858251107746, 583630397618757664934692641037584628
Offset: 0
a(0) = 1;
a(1) = 3: {1} {12} {123}
a(2) = 31: {1,2} {1,23} {2,13} {3,12} {1,234} {2,134} {3,124} {4,123}
{12,34} {13,24} {14,23} {12,345} {13,245} {14,235} {15,234} {23,145} {24,135}
{25,134} {34,125} {35,124} {45,123} {123,456} {124,356} {125,346} {126,345}
{134,256} {135,246} {136,245} {145,236} {146,235} {156,234}.
- David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 3*n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 3*n, i!*polcoef(sum(j=1, 3, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A144508
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, 3 or 4, for 0 <= k <= 4n.
Original entry on oeis.org
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, 38001495237579931, 169490425291053577442, 1102725620990181693266071, 10030550674270068548738783696, 123317200510025161580777179001154, 1993320784474917266370637900936051186, 41401645296339316791633672053851083955147
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 4*n := t[n, k] = t[n - 1, k - 1] + (k - 1)*t[n - 1, k - 2] + (1/2)*(k - 1)*(k - 2)*t[n - 1, k - 3] + (1/6)*(k - 1)*(k - 2)*(k - 3)*t[n - 1, k - 4]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 4*n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 4*n, i!*polcoef(sum(j=1, 4, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A144509
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., 5, for 0 <= k <= 5n.
Original entry on oeis.org
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, 16557834064546698285496, 1350410785161120363519024709, 182141025850694258874753732988078, 38395944834298393218465758049745918098, 12093097322244029427838390643054170162054258, 5485321312184901565806045962453632525844948020084
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 5*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 4}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 5*n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 5*n, i!*polcoef(sum(j=1, 5, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A149187
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., 6, for 0 <= k <= 6n.
Original entry on oeis.org
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, 8064519699524417149584982475, 12261371699318896159811165091392898, 34949877647533654983311522321749656046802, 174047342897498341701547082125166096889157924610, 1431472607165249058159939223685478666695036430843693596
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 6, n), k=0..6*n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 17 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*i < n, 0, If[n == 0, If[t == 0, 1, 0], Sum[b[n-i*j, i-1, t-j]* multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, Min[t, n/i]}]]]; a[n_] := Sum[b[k, 6, n], {k, 0, 6*n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
-
{a(n) = sum(i=n, 6*n, i!*polcoef(sum(j=1, 6, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281358
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 6 times.
Original entry on oeis.org
1, 7, 6427, 216864652, 60790021361170, 79397199549271412737, 350521520018942991464535019, 4247805448772073978048752721163278, 122022975450467092259059357046375920848764, 7449370563518425038119522091529589590475534631830
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..88
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 7, n), k=0..7*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 7*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 6}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 7*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 7*n, i!*polcoef(sum(j=1, 7, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281360
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 8 times.
Original entry on oeis.org
1, 9, 92368, 124762262630, 2774049143394729653, 476872353039366288373555323, 414678423576860263798348331987688320, 1383884737648788823775562903922773021277571568, 14584126149704606223764458141727351569547933381159988406, 419715170056359079715862408734598208208707081189266290220651371206
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..69
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 9, n), k=0..9*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 9*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 8}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 9*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 9*n, i!*polcoef(sum(j=1, 9, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281361
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 9 times.
Original entry on oeis.org
1, 10, 352705, 3047235458767, 609542744597785306189, 1214103036523322674154687139158, 14963835327495031822418126706099787884130, 836883118002221273912672040462907783367741190535388, 170589804359366329173961838612841486616626580885839826818966688, 107640669875812795238625627484701500354901860426640161278022882392148747562, 185260259482556646382994900799988470488841686941141661692183483756531004879305895810561
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..63
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 10, n), k=0..10*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 10*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 9}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 10*n}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 10*n, i!*polcoef(sum(j=1, 10, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281901
Number of scenarios in the Gift Exchange Game with n players and n wrapped gifts when a gift can be stolen at most n times.
Original entry on oeis.org
1, 2, 31, 18252, 1495388159, 34155922905682979, 350521520018942991464535019, 2371013832433361706367594400829713564440, 14584126149704606223764458141727351569547933381159988406, 107640669875812795238625627484701500354901860426640161278022882392148747562
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..26
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem"
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem"
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(j, n+1, n), j=0..(n+1)*n):
seq(a(n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*iJean-François Alcover, Mar 13 2017, translated from Maple *)
Showing 1-9 of 9 results.
Comments