A001515
Bessel polynomial y_n(x) evaluated at x=1.
Original entry on oeis.org
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
The first few Bessel polynomials are (cf. A001497, A001498):
y_0 = 1
y_1 = 1 + x
y_2 = 1 + 3*x + 3*x^2
y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 11.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- Wojciech Mlotkowski and Anna Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1968
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for related partition-counting sequences
See
A144301 for other formulas and comments.
Replace "sets" with "lists" in comment:
A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
-
[(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
-
[sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
A144416
a(n) is the total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3, for 0 <= k <= 3n.
Original entry on oeis.org
1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, 25942945219747, 8394104851717686, 3395846808758759686, 1679398297627675722593, 996789456118195908366641, 699283226713639676370419067, 572385833490097906671186099971, 540635257271794961275858251107746, 583630397618757664934692641037584628
Offset: 0
a(0) = 1;
a(1) = 3: {1} {12} {123}
a(2) = 31: {1,2} {1,23} {2,13} {3,12} {1,234} {2,134} {3,124} {4,123}
{12,34} {13,24} {14,23} {12,345} {13,245} {14,235} {15,234} {23,145} {24,135}
{25,134} {34,125} {35,124} {45,123} {123,456} {124,356} {125,346} {126,345}
{134,256} {135,246} {136,245} {145,236} {146,235} {156,234}.
- David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 3*n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 3*n, i!*polcoef(sum(j=1, 3, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A144508
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, 3 or 4, for 0 <= k <= 4n.
Original entry on oeis.org
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, 38001495237579931, 169490425291053577442, 1102725620990181693266071, 10030550674270068548738783696, 123317200510025161580777179001154, 1993320784474917266370637900936051186, 41401645296339316791633672053851083955147
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 4*n := t[n, k] = t[n - 1, k - 1] + (k - 1)*t[n - 1, k - 2] + (1/2)*(k - 1)*(k - 2)*t[n - 1, k - 3] + (1/6)*(k - 1)*(k - 2)*(k - 3)*t[n - 1, k - 4]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 4*n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 4*n, i!*polcoef(sum(j=1, 4, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A149187
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., 6, for 0 <= k <= 6n.
Original entry on oeis.org
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, 8064519699524417149584982475, 12261371699318896159811165091392898, 34949877647533654983311522321749656046802, 174047342897498341701547082125166096889157924610, 1431472607165249058159939223685478666695036430843693596
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 6, n), k=0..6*n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 17 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*i < n, 0, If[n == 0, If[t == 0, 1, 0], Sum[b[n-i*j, i-1, t-j]* multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, Min[t, n/i]}]]]; a[n_] := Sum[b[k, 6, n], {k, 0, 6*n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
-
{a(n) = sum(i=n, 6*n, i!*polcoef(sum(j=1, 6, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281358
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 6 times.
Original entry on oeis.org
1, 7, 6427, 216864652, 60790021361170, 79397199549271412737, 350521520018942991464535019, 4247805448772073978048752721163278, 122022975450467092259059357046375920848764, 7449370563518425038119522091529589590475534631830
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..88
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 7, n), k=0..7*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 7*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 6}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 7*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 7*n, i!*polcoef(sum(j=1, 7, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281359
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 7 times.
Original entry on oeis.org
1, 8, 24301, 5165454442, 12845435390707724, 191739533381111401455478, 11834912423104188943497126664597, 2371013832433361706367594400829713564440, 1299618941291522676629215597535104557826094801396, 1716119248126070756229849154290399886241087778087554633612
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..77
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 8, n), k=0..8*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 8*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 7}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 8*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 8*n, i!*polcoef(sum(j=1, 8, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281360
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 8 times.
Original entry on oeis.org
1, 9, 92368, 124762262630, 2774049143394729653, 476872353039366288373555323, 414678423576860263798348331987688320, 1383884737648788823775562903922773021277571568, 14584126149704606223764458141727351569547933381159988406, 419715170056359079715862408734598208208707081189266290220651371206
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..69
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 9, n), k=0..9*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 9*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 8}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 9*n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 9*n, i!*polcoef(sum(j=1, 9, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A281361
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 9 times.
Original entry on oeis.org
1, 10, 352705, 3047235458767, 609542744597785306189, 1214103036523322674154687139158, 14963835327495031822418126706099787884130, 836883118002221273912672040462907783367741190535388, 170589804359366329173961838612841486616626580885839826818966688, 107640669875812795238625627484701500354901860426640161278022882392148747562, 185260259482556646382994900799988470488841686941141661692183483756531004879305895810561
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..63
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are
A001515,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(k, 10, n), k=0..10*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 10*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 9}]; t[, ] = 0; a[n_] := Sum[t[n, k], {k, 0, 10*n}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 18 2017 *)
-
{a(n) = sum(i=n, 10*n, i!*polcoef(sum(j=1, 10, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
A144510
Array T(n,k) (n >= 1, k >= 0) read by downwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., i] into exactly k nonempty blocks, each of size at most n, for any i in the range n <= i <= k*n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 37, 31, 4, 1, 1, 266, 842, 121, 5, 1, 1, 2431, 45296, 18252, 456, 6, 1, 1, 27007, 4061871, 7958726, 405408, 1709, 7, 1, 1, 353522, 546809243, 7528988476, 1495388159, 9268549, 6427, 8, 1
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 7, 37, 266, 2431, 27007, ...
1, 3, 31, 842, 45296, 4061871, 546809243, ...
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ...
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
For the transposed array see
A144512.
-
b := proc(n, i, k) local r;
option remember;
if n = i then 1;
elif i < n then 0;
elif n < 1 then 0;
else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k);
end if;
end proc;
T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
# Peter Luschny, Apr 26 2011
A144510 := proc(n, k) local m;
add(m!*coeff(expand((exp(x)*GAMMA(n+1,x)/GAMMA(n+1)-1)^k),x,m),m=k..k*n)/k! end: for row from 1 to 6 do seq(A144510(row, col), col = 0..5) od;
-
multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A144512
Array read by upwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., k+1, for 0 <= k <= (k+1)*n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 31, 37, 1, 1, 5, 121, 842, 266, 1, 1, 6, 456, 18252, 45296, 2431, 1, 1, 7, 1709, 405408, 7958726, 4061871, 27007, 1, 1, 8, 6427, 9268549, 1495388159, 7528988476, 546809243, 353522, 1, 1, 9, 24301, 216864652, 295887993624, 15467641899285
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, ...
1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, ...
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ...
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
-
b := proc(n, i, k) local r;
option remember;
if n = i then 1;
elif i < n then 0;
elif n < 1 then 0;
else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k);
end if;
end proc;
T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
-
multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Showing 1-10 of 12 results.
Comments