cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A050449 a(n) = Sum_{d|n, d == 1 (mod 4)} d.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 1, 10, 6, 1, 1, 14, 1, 6, 1, 18, 10, 1, 6, 22, 1, 1, 1, 31, 14, 10, 1, 30, 6, 1, 1, 34, 18, 6, 10, 38, 1, 14, 6, 42, 22, 1, 1, 60, 1, 1, 1, 50, 31, 18, 14, 54, 10, 6, 1, 58, 30, 1, 6, 62, 1, 31, 1, 84, 34, 1, 18, 70, 6, 1, 10, 74, 38, 31, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) != a(21), for example. - R. J. Mathar, Dec 20 2011

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), this sequence (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A050449 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if d mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050449(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[#, 4] == 1]*#&]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 4) == 1)); \\ Michel Marcus, Jan 30 2018

Formula

G.f.: Sum_{n>=0} (4*n+1)*x^(4*n+1)/(1-x^(4*n+1)). - Vladeta Jovovic, Nov 14 2002
a(n) = A000593(n) - A050452(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{n >= 1} x^n*(1 + 3*x^(4*n))/(1 - x^(4*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023

Extensions

More terms from Vladeta Jovovic, Nov 14 2002
More terms from Reinhard Zumkeller, Apr 18 2006

A078181 a(n) = Sum_{d|n, d == 1 (mod 3)} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 mod k} d: A000593 (k=2), this sequence (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A078181 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =1 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)

Formula

G.f.: Sum_{n>=0} (3*n+1)*x^(3*n+1)/(1-x^(3*n+1)).
G.f.: -q*P'/P where P = Product_{n>=0} (1 - q^(3*n+1)). - Joerg Arndt, Aug 03 2011
Conjecture. If a(n)=n+1 then n==1 (mod 3). (Is this easy to settle? It has been verified for n=1,2,3,...,2000.) - John W. Layman, Apr 03 2006
The conjecture is false. The first and only counterexample below 10^8 is a(6800) = 6801 and 6800 == 2 (mod 3). - Lambert Herrgesell (zero815(AT)googlemail.com), May 06 2008
Equals A051731 * [1, 0, 0, 4, 0, 0, 7, 0, 0, 10, ...]. - Gary W. Adamson, Nov 06 2007
A272027(n/3) + a(n) + A078182(n) = A000203(n). - R. J. Mathar, May 25 2020
G.f.: Sum_{n >= 1} x^n*(1 + 2*x^(3*n))/(1 - x^(3*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A284099 a(n) = Sum_{d|n, d == 1 (mod 7)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 16, 9, 1, 1, 1, 1, 1, 23, 1, 9, 1, 1, 1, 1, 30, 16, 1, 9, 1, 1, 1, 37, 1, 1, 1, 9, 1, 1, 44, 23, 16, 1, 1, 9, 1, 51, 1, 1, 1, 1, 1, 9, 58, 30, 1, 16, 1, 1, 1, 73, 1, 23, 1, 1, 1, 1, 72, 45, 1, 1, 16, 1, 1, 79, 1, 9, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A109703.
Cf. Sum_{d|n, d == 1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), this sequence (k=7), A284100 (k=8).
Cf. Sum_{d|n, d == k (mod 7)} d: this sequence (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1, d, 0], {d, Divisors[n]}], {n, 82}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[DivisorSum[n,#&,Mod[#,7]==1&],{n,90}] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 7)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (7*k + 1)*x^(7*k+1)/(1 - x^(7*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(7*n))/(1 - x^(7*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A109091 Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.

Original entry on oeis.org

1, -1, -2, 3, 1, 2, -6, -5, 7, -1, 12, -6, -12, 6, -2, 11, -16, -7, 20, 3, 12, -12, -22, 10, 1, 12, -20, -18, 30, 2, 32, -21, -24, 16, -6, 21, -36, -20, 24, -5, 42, -12, -42, 36, 7, 22, -46, -22, 43, -1, 32, -36, -52, 20, 12, 30, -40, -30, 60, -6, 62, -32, -42, 43, -12, 24, -66, -48, 44, 6, 72, -35, -72, 36, -2, 60, -72
Offset: 1

Views

Author

Michael Somos, Jun 18 2005

Keywords

Examples

			G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* Michael Somos, Mar 21 2008 */
    
  • Ruby
    def s(k, m, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == m}
      s
    end
    def A109091(n)
      (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
    end # Seiichi Manyama, Apr 01 2017

Formula

G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.
-5*a(n) = A109064(n) unless n = 0.
a(n) = A284097(n) + A284103(n) - A284280(n) - A284281(n) = A284150(n) - A284152(n). - Seiichi Manyama, Apr 01 2017
L.g.f.: -log(1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(15*sqrt(5)) = 0.294254... . - Amiram Eldar, Jan 29 2024

A109697 Number of partitions of n into parts each equal to 1 mod 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8, 10, 11, 12, 12, 13, 15, 17, 18, 19, 20, 23, 26, 28, 29, 31, 34, 38, 41, 43, 45, 50, 55, 60, 63, 66, 71, 79, 85, 90, 94, 101, 110, 120, 127, 133, 141, 153, 165, 176, 184, 195, 210, 227, 241, 254, 267, 286, 307, 327
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(11)=3 since 11 = 11 = 6+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), this sequence (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

Formula

G.f.: 1/product(1-x^(1+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(8/5) * 3^(1/10) * 5^(2/5) * Pi^(4/5) * n^(3/5)) * (1 - (3*sqrt(3/10)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

More terms from Emeric Deutsch, Mar 30 2006

A284280 a(n) = Sum_{d|n, d == 2 (mod 5)} d.

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 7, 2, 0, 2, 0, 14, 0, 9, 0, 2, 17, 2, 0, 2, 7, 24, 0, 14, 0, 2, 27, 9, 0, 2, 0, 34, 0, 19, 7, 14, 37, 2, 0, 2, 0, 51, 0, 24, 0, 2, 47, 14, 7, 2, 17, 54, 0, 29, 0, 9, 57, 2, 0, 14, 0, 64, 7, 34, 0, 24, 67, 19, 0, 9, 0, 86, 0, 39, 0, 2, 84, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), this sequence (k=2), A284281 (k=3), A284103 (k=4).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 2, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d, 5)==2, d, 0)), ", ")) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==2]) # Indranil Ghosh, Mar 24 2017

Formula

G.f.: Sum_{k>=0} (5*k + 2)*x^(5*k+2)/(1 - x^(5*k+2)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A284281 a(n) = Sum_{d|n, d == 3 (mod 5)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 3, 13, 0, 3, 8, 0, 21, 0, 0, 3, 0, 23, 11, 0, 13, 3, 28, 0, 3, 0, 8, 36, 0, 0, 21, 0, 38, 16, 8, 0, 3, 43, 0, 3, 23, 0, 59, 0, 0, 3, 13, 53, 21, 0, 36, 3, 58, 0, 3, 0, 0, 66, 8, 13, 36, 0, 68, 26, 0, 0, 29, 73, 0, 3, 38, 0, 94, 0, 8
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), A284280 (k=2), this sequence (k=3), A284103 (k=4).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==3, d, 0)),", ")) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==3]) # Indranil Ghosh, Mar 24 2017

Formula

G.f.: Sum_{k>=0} (5*k + 3)*x^(5*k+3)/(1 - x^(5*k+3)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A284098 a(n) = Sum_{d|n, d == 1 (mod 6)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 14, 8, 1, 1, 1, 1, 20, 1, 8, 1, 1, 1, 26, 14, 1, 8, 1, 1, 32, 1, 1, 1, 8, 1, 38, 20, 14, 1, 1, 8, 44, 1, 1, 1, 1, 1, 57, 26, 1, 14, 1, 1, 56, 8, 20, 1, 1, 1, 62, 32, 8, 1, 14, 1, 68, 1, 1, 8, 1, 1, 74, 38, 26, 20, 8, 14, 80, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), this sequence (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 6)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%6==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (6*k + 1)*x^(6*k+1)/(1 - x^(6*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 5*x^(6*n))/(1 - x^(6*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - Amiram Eldar, Nov 26 2023

A284314 Expansion of Product_{k>=0} (1 - x^(5*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 3, -2, 0, 0, -1, 3, -3, 1, 0, -1, 4, -4, 1, 0, -1, 4, -5, 2, 0, -1, 5, -7, 3, 0, -1, 5, -8, 5, -1, -1, 6, -10, 6, -1, -1, 6, -12, 9, -2, -1, 7, -14, 11, -3, -1, 7, -16, 15, -5
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), A284313 (m=4), this sequence (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(5k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(5*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1.

A284100 a(n) = Sum_{d|n, d == 1 (mod 8)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 18, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 34, 18, 1, 10, 1, 1, 1, 1, 42, 1, 1, 1, 10, 1, 1, 1, 50, 26, 18, 1, 1, 10, 1, 1, 58, 1, 1, 1, 1, 1, 10, 1, 66, 34, 1, 18, 1, 1, 1, 10, 74, 1, 26, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A277090.
Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), this sequence (k=8).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 8] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,8]==1&]],{n,80}] (* or *) Table[DivisorSum[n,#&,Mod[#,8]==1&],{n,80}] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d, 8)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%8==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (8*k + 1)*x^(8*k+1)/(1 - x^(8*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 7*x^(8*n))/(1 - x^(8*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/96 = 0.102808... . - Amiram Eldar, Nov 26 2023
Showing 1-10 of 18 results. Next