cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A061256 Euler transform of sigma(n), cf. A000203.

Original entry on oeis.org

1, 1, 4, 8, 21, 39, 92, 170, 360, 667, 1316, 2393, 4541, 8100, 14824, 26071, 46422, 80314, 139978, 238641, 408201, 686799, 1156062, 1920992, 3189144, 5238848, 8589850, 13963467, 22641585, 36447544, 58507590, 93334008, 148449417, 234829969, 370345918
Offset: 0

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

This is also the number of ordered triples of permutations f, g, h in Symm(n) which all commute, divided by n!. This was conjectured by Franklin T. Adams-Watters, Jan 16 2006, and proved by J. R. Britnell in 2012.
According to a message on a blog page by "Allan" (see Secret Blogging Seminar link) it appears that a(n) = number of conjugacy classes of commutative ordered pairs in Symm(n).
John McKay (email to N. J. A. Sloane, Apr 23 2013) observes that A061256 and A006908 coincide for a surprising number of terms, and asks for an explanation. - N. J. A. Sloane, May 19 2013

Examples

			1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 92*x^6 + 170*x^7 + 360*x^8 + ...
		

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), this sequence (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 18 2012 *)
    nmax = 40; CoefficientList[Series[Product[1/QPochhammer[x^k]^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)^j); Vec(gf) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))^2/m)),n))} /* Paul D. Hanna, Mar 28 2009 */

Formula

a(n) = A072169(n) / n!.
G.f.: Product_{k=1..infinity} (1 - x^k)^(-sigma(k)). a(n)=1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k)=Sum_{d|k} d*sigma(d), cf. A001001.
G.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)^2 /n ). [Paul D. Hanna, Mar 28 2009]
G.f.: exp( Sum_{n>=1} sigma_2(n)*x^n/(1-x^n)/n ). [Vladeta Jovovic, Mar 28 2009]
G.f.: prod(n>=1, E(x^n)^n ) where E(x) = prod(k>=1, 1-x^k). [Joerg Arndt, Apr 12 2013]
a(n) ~ exp((3*Pi)^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2 - Pi^(4/3) * n^(1/3) / (4 * 3^(2/3) * Zeta(3)^(1/3)) - 1/24 - Pi^2/(288*Zeta(3))) * A^(1/2) * Zeta(3)^(11/72) / (2^(11/24) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 23 2018

Extensions

Entry revised by N. J. A. Sloane, Jun 13 2012

A275585 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).

Original entry on oeis.org

1, 1, 6, 16, 52, 128, 373, 913, 2399, 5796, 14298, 33655, 79756, 183078, 419846, 942807, 2106176, 4633208, 10127557, 21870997, 46912648, 99639685, 210206722, 439777198, 914157490, 1886428608, 3869204040, 7884691072, 15976273573, 32182538964, 64484592372, 128518359868, 254868985099, 502950483815, 987904826874, 1931596634076
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2016

Keywords

Comments

Euler transform of the sum of squares of divisors (A001157).

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), this sequence (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma[2](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[2, k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027847(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 08 2017
a(n) ~ exp(4*Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) - Pi * 5^(1/4) * n^(1/4) / (8 * 3^(7/4) * Zeta(3)^(1/4)) + Zeta(3) / (8*Pi^2)) * Zeta(3)^(1/8) / (2^(3/2) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A319647 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^sigma_n(k).

Original entry on oeis.org

1, 1, 6, 38, 526, 13074, 702813, 70939556, 13879861574, 5583837482767, 4393101918607162, 6717450870069292051, 21057681806321501744772, 131246096280071506595491449, 1604095619160115980216291007253, 40299198842857238408636666363954678, 2031474817845087309816967328335309651478
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 26 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          sigma[k](d), d=divisors(j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^DivisorSigma[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Product[Product[1/(1 - x^(i j))^(j^n), {j, 1, n}], {i, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n + 1, k] x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
  • PARI
    {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^n))^sigma(k, n)), n)} \\ Seiichi Manyama, Oct 27 2018

Formula

a(n) = [x^n] Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^n).
a(n) = [x^n] exp(Sum_{k>=1} sigma_(n+1)(k)*x^k/(k*(1 - x^k))).

A301542 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_4(k)).

Original entry on oeis.org

1, 1, 18, 100, 526, 2546, 12953, 60929, 282194, 1265959, 5580958, 24057117, 101922204, 424244720, 1739362261, 7027590168, 28017627428, 110295521903, 429110693519, 1650961520518, 6285554480496, 23693047787961, 88469251486817, 327380976530282, 1201122749057307
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), this sequence (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[4, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 3^(2/3) * Pi * (Zeta(5)/7)^(1/6) * n^(5/6)/5 + Pi * (7/Zeta(5))^(1/6) * n^(1/6) / (240 * sqrt(2) * 3^(2/3)) - 3*Zeta(5) / (8*Pi^4)) * Zeta(5)^(1/12) / (2^(3/4) * 3^(2/3) * 7^(1/12) * n^(7/12)).
G.f.: exp(Sum_{k>=1} sigma_5(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301543 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_5(k)).

Original entry on oeis.org

1, 1, 34, 278, 1896, 13074, 92442, 607200, 3866890, 24062327, 146637082, 873517399, 5101981085, 29274370913, 165261721720, 918756928198, 5035250026792, 27229238821726, 145412875008092, 767414597651951, 4004930689994100, 20679955170511834, 105711772783426512
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), this sequence (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[5, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((7*Pi)^(6/7) * (Zeta(7)/3)^(1/7) * n^(6/7) / (3*2^(3/7)) - Zeta'(-5)/2) * (Zeta(7)/(3*Pi))^(251/3528) / (2^(251/1176) * 7^(2015/3528) * n^(2015/3528)).
G.f.: exp(Sum_{k>=1} sigma_6(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)).

Original entry on oeis.org

1, 1, 66, 796, 7102, 70178, 702813, 6439533, 56938814, 495807251, 4218728690, 34991240657, 284295574638, 2269120791410, 17804772970005, 137455131596032, 1045354069608726, 7839809431539193, 58027706392726849, 424187792875896932, 3064539107659680502
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)).
G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301547 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 514, 20198, 414696, 12465714, 373679122, 9181285000, 224372879810, 5583837482767, 132433701077938, 3028947042351535, 68425900639083569, 1518510622688185301, 32936878700790531296, 701684036762210944310, 14726705417058058788172, 304326729686784847885978
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          sigma[9](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((11*Pi)^(10/11) * (Zeta(11)/3)^(1/11) * n^(10/11) / (2^(3/11) * 5^(10/11)) - Zeta'(-9)/2) * (5*Zeta(11)/(3*Pi))^(131/2904) / (2^(131/968) * 11^(1583/2904) * n^(1583/2904)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301551 Expansion of Product_{k>=1} (1 + x^k)^(sigma_7(k)).

Original entry on oeis.org

1, 1, 129, 2317, 26957, 385147, 5514889, 70250881, 866874825, 10634404922, 126906497939, 1470673175003, 16705788322140, 186487470519166, 2044203433733016, 22025647881901542, 233686866722213324, 2443978994099801452, 25211475391206919299, 256716054713570158748
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[7, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(9 * Pi^(8/9) * (17*Zeta(9))^(1/9) * n^(8/9) / 2^(29/9)) * (17*Zeta(9)/Pi)^(1/18) / (3 * 2^(883/1440) * n^(5/9)).
G.f.: exp(Sum_{k>=1} sigma_8(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 26 2018

A321876 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - x^j)^sigma_k(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 8, 11, 1, 1, 10, 16, 21, 17, 1, 1, 18, 38, 52, 39, 34, 1, 1, 34, 100, 156, 128, 92, 52, 1, 1, 66, 278, 526, 534, 373, 170, 94, 1, 1, 130, 796, 1896, 2546, 2014, 913, 360, 145, 1, 1, 258, 2318, 7102, 13074, 12953, 6796, 2399, 667, 244
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
  11,  21,   52,  156,   526,   1896,  ...
  17,  39,  128,  534,  2546,  13074,  ...
		

Crossrefs

Main diagonal gives A319647.
Cf. A321877.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^j)), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^j))).
Showing 1-9 of 9 results.