cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001605 Indices of prime Fibonacci numbers.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677, 14431, 25561, 30757, 35999, 37511, 50833, 81839, 104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353, 3244369, 3340367
Offset: 1

Views

Author

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
Since F(n) divides F(mn) (cf. A001578, A086597), all terms of this sequence are primes except for a(2) = 4 = 2 * 2 but F(2) = 1. - M. F. Hasler, Dec 12 2007
What is the next larger twin prime after F(4) = 3, F(5) = 5, F(7) = 13? The next candidates seem to be F(104911) or F(1968721) (greater of a pair), or F(397379), F(931517) (lesser of a pair). - M. F. Hasler, Jan 30 2013, edited Dec 24 2016, edited Sep 23 2017 by Bobby Jacobs
_Henri Lifchitz_ confirms that the data section gives the full list (49 terms) as far as we know it today of indices of prime Fibonacci numbers (including proven primes and PRPs). - N. J. A. Sloane, Jul 09 2016
Terms n such that n-2 is also a term are listed in A279795. - M. F. Hasler, Dec 24 2016
There are no Fibonacci numbers that are twin primes after F(7) = 13. Every Fibonacci prime greater than F(4) = 3 is of the form F(2*n+1). Since F(2*n+1)+2 and F(2*n+1)-2 are F(n+2)*L(n-1) and F(n-1)*L(n+2) in some order, and F(n+2) > 1, L(n-1) > 1, F(n-1) > 1, and L(n+2) > 1 for n > 3. - Bobby Jacobs, Sep 23 2017
These primes are occurring with about the same normalized frequency as Repunit primes (see Generalized Repunit Conjecture Ref). Assuming a base=1.618 (ratio of sequential terms), then the best fit coefficient is 0.60324 for the first 56 terms, which is already approaching Euler's constant 0.56145948. - Paul Bourdelais, Aug 23 2024

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 54.
  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 178.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A046022.
Column k=1 of A303215.

Programs

  • Mathematica
    Select[Range[10^4], PrimeQ[Fibonacci[#]] &] (* Harvey P. Dale, Nov 20 2012 *)
    (* Start ~ 1.8x faster than the above *)
    Select[Range[10^4], PrimeQ[#] && PrimeQ[Fibonacci[#]] &] (* Eric W. Weisstein, Nov 07 2017 *)
    Select[Prime[Range[PrimePi[10^4]]], PrimeQ[Fibonacci[#]] &] (* Eric W. Weisstein, Nov 07 2017 *)
    (* End *)
  • PARI
    v=[3,4]; forprime(p=5,1e5, if(ispseudoprime(fibonacci(p)), v=concat(v,p))); v \\ Charles R Greathouse IV, Feb 14 2011
    
  • PARI
    is_A001605(n)={n==4 || isprime(n) & ispseudoprime(fibonacci(n))}  \\ M. F. Hasler, Sep 29 2012

Formula

Prime(i) = a(n) for some n <=> A080345(i) <= 1. - M. F. Hasler, Dec 12 2007

Extensions

Additional comments from Robert G. Wilson v, Aug 18 2000
More terms from David Broadhurst, Nov 08 2001
Two more terms (148091 and 201107) from T. D. Noe, Feb 12 2003 and Mar 04 2003
397379 from T. D. Noe, Aug 18 2003
433781, 590041, 593689 from Henri Lifchitz submitted by Ray Chandler, Feb 11 2005
604711 from Henri Lifchitz communicated by Eric W. Weisstein, Nov 29 2005
931517, 1049897, 1285607 found by Henri Lifchitz circa Nov 01 2008 and submitted by Alexander Adamchuk, Nov 28 2008
1636007 from Henri Lifchitz March 2009, communicated by Eric W. Weisstein, Apr 24 2009
1803059 and 1968721 from Henri Lifchitz, November 2009, submitted by Alex Ratushnyak, Aug 08 2012
a(49)=2904353 from Henri Lifchitz, Jul 15 2014
a(50)=3244369 from Henri Lifchitz, Nov 04 2017
a(51)=3340367 from Henri Lifchitz, Apr 25 2018
a(52)-a(56) from Ryan Propper added by Paul Bourdelais, Aug 23 2024

A072381 Numbers m such that Fibonacci(m) is a semiprime.

Original entry on oeis.org

8, 9, 10, 14, 19, 22, 26, 31, 34, 41, 53, 59, 61, 71, 73, 79, 89, 94, 101, 107, 109, 113, 121, 127, 151, 167, 173, 191, 193, 199, 227, 251, 271, 277, 293, 331, 353, 397, 401, 467, 587, 599, 601, 613, 631, 653, 743, 991, 1091, 1223, 1373, 1487
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 20 2002

Keywords

Comments

Note that there are two cases: (1) n is 2p, in which case the semiprime is Fibonacci(p)*Lucas(p) for some prime p, or (2) n is a power of a prime p^k for k > 0. In the first case, the primes p are in sequence A080327. In the second case, it appears that k=1 except for n = 8, 9 and 121. - T. D. Noe, Sep 23 2005
The associated sequence of Fibonacci numbers contains no squares, since the only Fibonacci numbers which are square are 1 and 144. Consequently this is a subsequence of A114842. - Charles R Greathouse IV, Sep 24 2012
Sequence continues as 1543?, 1709, 1741?, 1759, 1801?, 1889, 1987, ..., where ? marks uncertain terms. - Max Alekseyev, Jul 10 2016

Examples

			a(4) = 14 because the 14th Fibonacci number 377 = 13*29 is a semiprime.
		

Crossrefs

Cf. A053409, A085726 (n such that n-th Lucas number is a semiprime).
Column k=2 of A303215.

Programs

  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[Fibonacci[ # ]] == 2&] (Noe)
    Select[Range[1500],PrimeOmega[Fibonacci[#]]==2&] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    for(n=2,9999,bigomega(fibonacci(n))==2&&print1(n",")) \\ - M. F. Hasler, Oct 31 2012
    
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(n%2, my(p); if(issquare(n,&p), isprime(p) && isprime(fibonacci(p)) && isprime(fibonacci(n)/fibonacci(p)), isprime(n) && issemi(fibonacci(n))), (isprime(n/2) && isprime(fibonacci(n/2)) && isprime(fibonacci(n)/fibonacci(n/2))) || n==8) \\ Charles R Greathouse IV, Oct 06 2016

Extensions

More terms from Don Reble, Jul 31 2002
a(49)-a(50) from Max Alekseyev, Aug 18 2013
a(51)-a(52) from Max Alekseyev, Jul 10 2016

A303217 A(n,k) is the n-th index of a Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 8, 4, 15, 9, 5, 20, 16, 10, 6, 30, 24, 18, 12, 7, 40, 36, 27, 21, 14, 11, 70, 48, 42, 28, 33, 19, 13, 60, 81, 54, 44, 32, 35, 22, 17, 80, 72, 104, 56, 45, 52, 37, 25, 23, 90, 84, 110, 105, 64, 50, 55, 38, 26, 29, 140, 126, 88, 112, 136, 78, 57, 74, 39, 31, 43
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   3,  8, 15, 20, 30,  40,  70,  60,  80,  90, ...
   4,  9, 16, 24, 36,  48,  81,  72,  84, 126, ...
   5, 10, 18, 27, 42,  54, 104, 110,  88, 165, ...
   6, 12, 21, 28, 44,  56, 105, 112,  96, 256, ...
   7, 14, 33, 32, 45,  64, 136, 114, 100, 258, ...
  11, 19, 35, 52, 50,  78, 148, 128, 108, 266, ...
  13, 22, 37, 55, 57,  92, 152, 130, 132, 296, ...
  17, 25, 38, 74, 63,  95, 164, 135, 138, 304, ...
  23, 26, 39, 77, 66,  99, 182, 147, 156, 322, ...
  29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
		

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12; maxIndex = 200;
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k&];
    T = Array[col, nmax];
    A[n_, k_] := T[[k, n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)

Formula

A000045(A(n,k)) = A303218(n,k).
A001221(A000045(A(n,k))) = k.

A303216 A(n,k) is the n-th Fibonacci number with exactly k prime factors (counted with multiplicity); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 8, 34, 5, 6765, 610, 55, 13, 2584, 196418, 987, 377, 89, 144, 701408733, 317811, 10946, 4181, 233, 832040, 102334155, 1134903170, 2178309, 75025, 17711, 1597, 86267571272, 267914296, 12586269025, 365435296162, 32951280099, 3524578, 121393, 28657
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
    2,    21,       8,         6765,           2584,                 144, ...
    3,    34,     610,       196418,      701408733,           102334155, ...
    5,    55,     987,       317811,     1134903170,         12586269025, ...
   13,   377,   10946,      2178309,   365435296162,      10610209857723, ...
   89,  4181,   75025,  32951280099,  6557470319842,    2111485077978050, ...
  233, 17711, 3524578, 139583862445, 72723460248141, 7540113804746346429, ...
		

Crossrefs

Columns k=1-2 give: A005478, A053409.
Row n=1 gives A072397.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    A[n_, k_] := Module[{F = Fibonacci, h, p, q = 2}, p[_] = {}; While[ Length[p[k]] < n, q = q+1; h = PrimeOmega[F[q]]; p[h] = Append[p[h], F[q]]]; p[k][[n]]];
    Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2021, after Alois P. Heinz *)

Formula

A(n,k) = A000045(A303215(n,k)).
A001222(A(n,k)) = k.

A072396 Index of smallest Fibonacci number with n prime factors when counted with multiplicity.

Original entry on oeis.org

3, 8, 6, 20, 18, 12, 30, 54, 24, 36, 138, 48, 84, 72, 108, 96, 210, 120, 276, 168, 216, 252, 288, 240, 336, 570, 384, 420, 360, 576, 480, 540, 504, 660, 600, 672, 990, 720, 792, 840, 1152, 1140
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 21 2002

Keywords

Comments

1452 < a(43) <= 1596, a(44) = 1296, a(45) = 1368, a(46) = 1080, a(47) = 1200, a(48) <= 1728. - Daniel Suteu, Jan 19 2023

Examples

			a(3) = 6 since the 6th Fibonacci number 8 has 3 prime factors.
		

Crossrefs

Row n=1 of A303215.

Programs

  • PARI
    a(n) = my(k=1); while (bigomega(fibonacci(k)) != n, k++); k; \\ Michel Marcus, Aug 26 2020

Extensions

a(17)-a(24) from Alois P. Heinz, Apr 10 2018
a(25)-a(42) from Amiram Eldar, Aug 26 2020

A114813 Indices of Fibonacci numbers with 4 prime factors when counted with multiplicity.

Original entry on oeis.org

20, 27, 28, 32, 52, 55, 74, 77, 85, 87, 93, 97, 115, 123, 143, 146, 149, 157, 161, 163, 178, 187, 197, 209, 211, 214, 215, 221, 223, 239, 242, 249, 262, 269, 283, 287, 307, 311, 313, 321, 334, 349, 379, 391, 393, 409, 421, 453, 487, 493, 499, 523, 581, 586
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Comments

1559, 1609, 2131, 2281, 2351, 2459, 2539, 3119, 3371, 4993, 5839, 6217, 7591, 7741, 8353, 9931 are also terms (data from Kelly link). - Chai Wah Wu, Nov 11 2019

Examples

			a(1)=20 because 20th Fibonacci number (i.e., 6765) consists of 4 prime factors (i.e., 3*5*11*41).
		

Crossrefs

Column k=4 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 4, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
  • PARI
    n=1;while(n<340,if(bigomega(fibonacci(n))==4,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, May 22 2006

A114812 Indices of Fibonacci numbers with 3 prime factors when counted with multiplicity.

Original entry on oeis.org

6, 15, 16, 21, 25, 33, 35, 37, 38, 39, 46, 49, 51, 58, 62, 65, 67, 82, 86, 103, 106, 119, 122, 139, 142, 145, 158, 166, 179, 181, 226, 233, 235, 241, 257, 263, 274, 281, 299, 301, 317, 337, 383, 389, 419, 457, 463, 473, 479, 491, 521, 541, 557, 619, 643, 659
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Comments

1811, 1933, 1997, 2069, 2087, 2203, 2221, 2311, 2663, 2713, 3631, 4157, 4651, 5107, 6701, 7211, 8123 are also terms (from data in Kelly link). - Chai Wah Wu, Nov 11 2019

Examples

			a(2)=15 because 15th Fibonacci number (i.e., 610) consists of 3 prime factors (i.e., 2*5*61).
		

Crossrefs

Column k=3 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 3, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
    Flatten[Position[Fibonacci[Range[700]],?(PrimeOmega[#]==3&)]] (* _Harvey P. Dale, Feb 15 2015 *)
  • PARI
    n=1;while(n<340,if(bigomega(fibonacci(n))==3,print1(n,", "));n++)

Formula

{n: A038575(n)=3}. [R. J. Mathar, Jun 08 2010]

Extensions

More terms from Ryan Propper, May 22 2006

A114814 Indices of Fibonacci numbers with 5 prime factors when counted with multiplicity.

Original entry on oeis.org

18, 44, 45, 57, 63, 68, 69, 76, 91, 98, 111, 118, 124, 125, 134, 141, 169, 172, 183, 185, 201, 202, 203, 213, 218, 229, 247, 253, 267, 302, 303, 329, 335, 347, 363, 371, 373, 377, 381, 382, 386, 395, 398, 413, 415, 439, 443, 461, 497, 501, 529, 547, 563, 579
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=18 because 18th Fibonacci number (i.e., 2584) consists of 5 prime factors (i.e., 2*2*2*17*19).
		

Crossrefs

Column k=5 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 5, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
  • PARI
    n=1;while(n<385,if(bigomega(fibonacci(n))==5,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, May 22 2006

A114815 Indices of Fibonacci numbers with 6 prime factors when counted with multiplicity.

Original entry on oeis.org

12, 40, 50, 64, 75, 92, 95, 99, 116, 117, 129, 133, 153, 155, 159, 177, 188, 194, 205, 206, 219, 237, 245, 265, 278, 314, 323, 327, 339, 341, 343, 346, 356, 358, 361, 362, 394, 407, 411, 417, 422, 427, 437, 446, 454, 466, 482, 502, 503, 505, 514, 515, 527
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=12 because 12th Fibonacci number (i.e., 144) consists of 6 prime factors (i.e., 2*2*2*2*3*3).
		

Crossrefs

Column k=6 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 6, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
    Position[Fibonacci[Range[550]],?(PrimeOmega[#]==6&)]//Flatten (* _Harvey P. Dale, Jun 12 2017 *)
  • PARI
    n=1;while(n<330,if(bigomega(fibonacci(n))==6,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, May 22 2006

A114816 Indices of Fibonacci numbers with 7 prime factors when counted with multiplicity.

Original entry on oeis.org

30, 42, 56, 66, 70, 81, 104, 105, 136, 148, 152, 164, 175, 195, 207, 212, 244, 254, 259, 289, 291, 292, 298, 305, 319, 326, 332, 344, 365, 367, 403, 404, 423, 445, 447, 451, 458, 478, 489, 511, 517, 519, 526, 533, 537, 543, 554, 565, 566, 597, 605, 679, 681
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1) = 30 because 30th Fibonacci number (i.e., 832040) consists of 7 prime factors (i.e., 2*2*2*5*11*31*61).
		

Crossrefs

Cf. A000045.
Column k=7 of A303215.

Programs

  • Mathematica
    t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 7, AppendTo[t, n]], {n, 2, 100}]; t (* T. D. Noe, Mar 14 2014 *)
  • PARI
    n=1;while(n<310,if(bigomega(fibonacci(n))==7,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, May 22 2006
Showing 1-10 of 16 results. Next