A212804 Expansion of (1 - x)/(1 - x - x^2).
1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976
Offset: 0
Examples
From _Petros Hadjicostas_, Jan 08 2019: (Start) For n = 6, we have a(6) = 5. The binary necklaces of length n+1 = 7 with exactly one occurrence of 00 are as follows: 0011111, 0010111, 0011011, 0011101, and 0010101. The corresponding cyclic compositions of n+1 = 7 with exactly one 1 (under MacMahon's bijection) are as follows: 1+6, 1+2+4, 1+3+3, 1+4+2, 1+2+2+2. Of course, removing the 1 from the cyclic composition, we get a (linear) composition of n = 6 with parts >= 2 (as stated above by _Joerg Arndt_): 6, 2+4, 3+3, 4+2, 2+2+2. (For linear compositions, 2+4 is not the same as 4+2.) (End)
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 84.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 11.
- J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017, Theorem 1.1, r=1 and k=0.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[Fibonacci(n + 1) - Fibonacci(n): n in [0..50]]; // Vincenzo Librandi, Dec 09 2012
-
Maple
a := n -> -I^n*ChebyshevU(n-2, -I/2): seq(simplify(a(n)), n = 0..49); # Peter Luschny, Dec 03 2023
-
Mathematica
Table[Fibonacci[n-1], {n, 0, 40}] (* Vladimir Reshetnikov, Sep 24 2016 *)
-
Sage
def A212804(): a, b = True, False x, y = 1, 0 while True: yield x if a else -x x, y = y, x - y a, b = b, a a = A212804() print([next(a) for in range(50)]) # _Peter Luschny, Mar 19 2020
Formula
G.f.: 1/(1 - (Sum_{k >= 2} x^k)). - Joerg Arndt, Aug 13 2012
a(n) = Fibonacci(n+1) - Fibonacci(n). - Arkadiusz Wesolowski, Oct 29 2012
G.f.: 1 - x*Q(0) where Q(k) = 1 - (1 + x)/(1 - x/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 3*x^3/(3*x - Q(0)) - x^2 + 1, where Q(k) = 1 - 1/(4^k - x*16^k/(x*4^k - 1/(1 + 1/(2*4^k - 4*x*16^k/(2*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
G.f.: G(0)*(1 - x)/(2 - x), where G(k) = 1 + 1/(1 - (x*(5*k - 1))/((x*(5*k + 4)) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
G.f.: 1 + Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(2*k + 1 + x)/( x*(2*k + 2 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
a(n) = Sum_{k=0..n} (C(k, n-k) - C(k, n-k-1)). - Peter Luschny, Oct 01 2014
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5)) + (-1 + sqrt(5))*(1 + sqrt(5))^n))/sqrt(5). - Colin Barker, Sep 25 2016
a(n) = A000045(n-1), n >= 1. - R. J. Mathar, Apr 14 2018
E.g.f.: exp((1 - sqrt(5))*x/2)*(3 + sqrt(5) + 2*exp(sqrt(5)*x))/(5 + sqrt(5)). - Stefano Spezia, Mar 09 2025
Comments