A057711
a(0)=0, a(1)=1, a(n) = n*2^(n-2) for n >= 2.
Original entry on oeis.org
0, 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560, 5632, 12288, 26624, 57344, 122880, 262144, 557056, 1179648, 2490368, 5242880, 11010048, 23068672, 48234496, 100663296, 209715200, 436207616, 905969664, 1879048192, 3892314112, 8053063680
Offset: 0
Bernhard Wolf (wolf(AT)cs.tu-berlin.de), Oct 24 2000
a(1)=6 because the palindromic compositions of n=4 are 4, 1+2+1, 1+1+1+1 and 2+2 and they contain 6 ones. - Silvia Heubach (sheubac(AT)calstatela.edu), Jan 10 2003
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
- A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
- P. Chinn, R. Grimaldi and S. Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
- Vincent Coll et al., Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9.1 (2015).
- Vladimir Dergachev and Alexandre Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10.2 (2000): 331-343.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- M. Ghallab et al., FERRY domain
- M. Ghallab, A. Howe et al., PDDL - The Planning Domain Definition Language, Version 1.2, Technical Report CVC TR-98-003/DCS TR-1165. Yale Center for Computational Vision and Control, 1998.
- Anna Khmelnitskaya, Gerard van der Laan, and Dolf Talmanm, The Number of Ways to Construct a Connected Graph: A Graph-Based Generalization of the Binomial Coefficients, J. Int. Seq. (2023) Art. 23.4.3. See p. 12.
- Eric Weisstein's World of Mathematics, Folded Cube Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- B. Wolf, Creating state sets
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Pisot sequence P(2, 6) (
A008776), Pisot sequence P(k, k(k+1))
-
[Ceiling(n*2^(n-2)) : n in [0..40]]; // Vincenzo Librandi, Sep 22 2011
-
Join[{0, 1}, Table[n 2^(n - 2), {n, 2, 30}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0, 1}, LinearRecurrence[{4, -4}, {2, 6}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (1 - 2 x + 2 x^2)/(1 - 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n)=ceil(n*2^(n-2)) \\ Charles R Greathouse IV, Oct 31 2011
-
x='x+O('x^50); concat(0, Vec(x*(1-2*x+2*x^2)/(1-2*x)^2)) \\ Altug Alkan, Nov 01 2015
A006490
a(1) = 1, a(2) = 0; for n > 2, a(n) = n*Fibonacci(n-2) (with the convention Fibonacci(0)=0, Fibonacci(1)=1).
Original entry on oeis.org
1, 0, 3, 4, 10, 18, 35, 64, 117, 210, 374, 660, 1157, 2016, 3495, 6032, 10370, 17766, 30343, 51680, 87801, 148830, 251758, 425064, 716425, 1205568, 2025675, 3399004, 5696122, 9534330, 15941099, 26625280, 44426877, 74062506, 123360230, 205303932, 341416205, 567353376
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
[n*Fibonacci(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 07 2017
-
with(combinat): a[1]:=1: a[2]:=0: for n from 3 to 40 do a[n]:=n*fibonacci(n-2) od: seq(a[n],n=1..40); # Emeric Deutsch, May 20 2006
A006490:=(1-2*z+2*z**2)/(z**2+z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[Sum[Fibonacci[n - 1], {i, 0, n}], {n, 0, 34}] (* Zerinvary Lajos, Jul 12 2009 *)
CoefficientList[Series[(1 - 2 x + 2 x^2) / (1 - x - x^2)^2, {x, 0, 33}], x] (* or *) LinearRecurrence[{2, 1, -2, -1}, {1, 0, 3, 4}, 40] (* Vincenzo Librandi, Aug 07 2017 *)
-
a(n) = n*fibonacci(n-2); \\ Michel Marcus, Aug 07 2017
A320341
Triangle read by rows: T(n,k) is the number of unmarked circular binary words (necklaces) of length n having k occurrences of the pattern 00 (n >= 0 and 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 1, 0, 1, 3, 2, 1, 1, 0, 1, 5, 3, 3, 1, 1, 0, 1, 5, 5, 4, 3, 1, 1, 0, 1, 8, 8, 8, 5, 4, 1, 1, 0, 1, 10, 13, 13, 11, 6, 4, 1, 1, 0, 1, 15, 21, 24, 19, 14, 7, 5, 1, 1, 0, 1, 19, 34, 40, 36, 26, 17, 8, 5, 1, 1, 0, 1, 31, 55, 71, 67, 54, 34, 22, 9, 6, 1, 1, 0, 1
Offset: 0
Triangle for T(n,k) begins:
n=0: 1;
n=1: 1, 1;
n=2: 2, 0, 1;
n=3: 2, 1, 0, 1;
n=4: 3, 1, 1, 0, 1;
n=5: 3, 2, 1, 1, 0, 1;
n=6: 5, 3, 3, 1, 1, 0, 1;
n=7: 5, 5, 4, 3, 1, 1, 0, 1;
n=8: 8, 8, 8, 5, 4, 1, 1, 0, 1;
n=9: 10, 13, 13, 11, 6, 4, 1, 1, 0, 1;
n=10: 15, 21, 24, 19, 14, 7, 5, 1, 1, 0, 1;
...
If we take the Taylor expansion of g.f. F(z,t) of T(n,k) around z=0, we get F(z,t) = 1 + (1+t)*z + (2+0*t+t^2)*z^2 + (2+t+0*t^2+t^3)*z^3 + (3+t+t^2+0*t^3+t^4)*z^4 + (3+2*t+t^2+t^3+0*t^4+t^5)*z^5 + ...
For example, for n=4, we have the following marked and unmarked circular binary words (the square brackets denote equivalence classes):
k=0: [1111], [1110,1101,1011,0111], [1010,0101], V(4,0) = 7 and T(4,0) = 3;
k=1: [1100,1001,0011,0110], V(4,1) = 4 and T(4,1) = 1;
k=2: [0001,0010,0100,1000], V(4,2) = 4 and T(4,2) = 1;
k=3: none, V(4,3) = 0 = T(4,3);
k=4: [0000], V(4,4) = 1 = T(4,4).
The corresponding cyclic compositions of n=4 under MacMahon's bijection are the following:
k=0 (no 1's): [none], [4], [2+2], T(4,1) - 1 = 3 - 1 = 2;
k=1 (one 1): [1+3], T(4,1) = 1;
k=2 (two 1's): [1+1+2], T(4,2) = 1;
k=3 (three 1's): none, T(4,3) = 0;
k=4 (four 1's): [1+1+1+1], T(4,4) = 1.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Hadjicostas and L. Zhang, On cyclic strings avoiding a pattern, Discrete Mathematics, 341 (2018), 1662-1674.
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
A322057
Array read by upwards antidiagonals: T(i,n) is the number of binary necklaces of length n that avoid 00...0 (i 0's).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 3, 4, 3, 1, 1, 2, 3, 5, 5, 5, 1, 1, 2, 3, 5, 6, 9, 5, 1, 1, 2, 3, 5, 7, 11, 11, 8, 1, 1, 2, 3, 5, 7, 12, 15, 19, 10, 1, 1, 2, 3, 5, 7, 13, 17, 27, 29, 15, 1, 1, 2, 3, 5, 7, 13, 18, 31, 43, 48, 19, 1
Offset: 1
The first few antidiagonals are:
1;
1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 2, 3, 3, 1;
1, 2, 3, 4, 3, 1;
1, 2, 3, 5, 5, 5, 1;
1, 2, 3, 5, 6, 9, 5, 1;
1, 2, 3, 5, 7, 11, 11, 8, 1;
1, 2, 3, 5, 7, 12, 15, 19, 10, 1;
...
From _Petros Hadjicostas_, Jan 16 2019: (Start)
In the above triangle (first few antidiagonals, read upwards), the j-th row corresponds to T(j,1), T(j-1,2), T(j-2,3), ..., T(1,j).
This, however, is not the j-th row of the square array (see the scanned page above).
For example, the sixth row of the square array is as follows:
T(6,1) = 1, T(6,2) = 2, T(6,3) = 3, T(6,4) = 5, T(6, 5) = 7, T(6, 6) = 13, ...
To generate these numbers, we use T(6, n) = (1/n)*Sum_{d|n} phi(n/d)*L(6,d), where
L(6,1) = 1, L(6,2) = 3, L(6,3) = 7, L(6,4) = 15, L(6,5) = 31, L(6,6) = 63, ...
See the sixth row of A125127. See also the Sage program below by Freddy Barrera.
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 520.
- Freddy Barrera, Rows n = 1..100 of triangle, flattened.
- Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press, 2015, annotated scan of page 520.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
-
T(i,n) = {my(p=1/(1 - x*(1 - x^i)/(1 - x))); polcoef(sum(d=1, n, eulerphi(d)*log(subst(p + O(x*x^(n\d)), x, x^d))/d), n)} \\ Andrew Howroyd, Jan 08 2024
-
# uses the L method from A125127
def T(i, n):
return sum(euler_phi(n//d)*L(i, d) for d in n.divisors()) // n
[T(i, n) for d in (1..12) for i, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 15 2019
A006491
Generalized Lucas numbers.
Original entry on oeis.org
1, 0, 4, 5, 15, 28, 60, 117, 230, 440, 834, 1560, 2891, 5310, 9680, 17527, 31545, 56468, 100590, 178395, 315106, 554530, 972564, 1700400, 2964325, 5153868, 8938300, 15465497, 26700915, 46004620, 79112304, 135801105, 232715006, 398151740
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
-
I:=[1,0,4,5,15,28]; [n le 6 select I[n] else 3*Self(n-1) -5*Self(n-3) +3*Self(n-5)+Self(n-6): n in [1..30]]; // G. C. Greubel, Jan 01 2018
-
G:=x*(1-x)*(1-2*x+2*x^2)/(1-x-x^2)^3: Gser:=series(G,x=0,45): seq(coeff(Gser,x^n),n=1..40); # Emeric Deutsch, Feb 07 2006
with(combinat): a[1]:=1: a[2]:=0: for n from 3 to 40 do a[n]:=a[n-1]+a[n-2]+n*fibonacci(n-2)-(n-1)*fibonacci(n-3) od: seq(a[n],n=1..40); # Emeric Deutsch, May 20 2006
A006491:=(z-1)*(1-2*z+2*z**2)/(z**2+z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 0, 4, 5, 15, 28}, 50] (* G. C. Greubel, Jan 01 2018 *)
-
x='x+O('x^30); Vec(x*(1-x)*(1-2*x+2*x^2)/(1-x-x^2)^3) \\ G. C. Greubel, Jan 01 2018
Showing 1-5 of 5 results.
Comments