A050946 "Stirling-Bernoulli transform" of Fibonacci numbers.
0, 1, 1, 7, 13, 151, 421, 6847, 25453, 532231, 2473141, 63206287, 352444093, 10645162711, 69251478661, 2413453999327, 17943523153933, 708721089607591, 5927841361456981, 261679010699505967, 2431910546406522973, 118654880542567722871, 1212989379862721528101
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..447
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
Programs
-
Maple
with(combinat): a:= n-> add((-1)^(k+1) *k! *stirling2(n+1, k+1)*fibonacci(k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, May 17 2013
-
Mathematica
CoefficientList[Series[E^x*(1-E^x)/(1-3*E^x+E^(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Aug 13 2013 *) t[0, k_] := Fibonacci[k]; t[n_, k_] := t[n, k] = (k+1)*(t[n-1, k] - t[n-1, k+1]); a[n_] := t[n, 0] // Abs; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 22 2013, after Paul Curtz *)
-
PARI
{a(n)=polcoeff(sum(m=0, n, fibonacci(m)*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
Formula
O.g.f.: Sum_{n>=1} Fibonacci(n) * n! * x^n / Product_{k=1..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
From Paul Barry, Apr 20 2005: (Start)
E.g.f.: exp(x)*(1-exp(x))/(1-3*exp(x)+exp((2*x))).
a(n) = Sum_{k=0..n} (-1)^(n-k)*S2(n, k)*k!*Fibonacci(k). [corrected by Ilya Gutkovskiy, Apr 04 2019] (End)
a(n) ~ c * n! / (log((3+sqrt(5))/2))^(n+1), where c = 1/sqrt(5) if n is even and c = 1 if n is odd. - Vaclav Kotesovec, Aug 13 2013
Comments