cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A151897 Number of subsets of {1, 2, ..., n} such that no member is a sum of distinct other members.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 37, 60, 100, 155, 249, 381, 591, 889, 1365, 2009, 3047, 4453, 6602, 9567, 14151, 20228, 29654, 42302, 61369, 87108, 126066, 177580, 256039, 360304, 515740, 724069, 1036860, 1448746, 2069526, 2893311, 4117725, 5749540, 8186555
Offset: 0

Views

Author

David Wasserman, Apr 16 2008

Keywords

Comments

This sequence and A085489 first differ at n = 7. a(7) = 60, A085489(7) = 61. A085489(7) includes {1, 2, 4, 7}, which is excluded from a(7) because 1+2+4 = 7.
If this sequence counts sum-free sets, A326080 counts sum-closed sets, which are different from sum-full sets (A093971). - Gus Wiseman, Jun 07 2019

Examples

			a(4) = 13, including all subsets of {1, 2, 3, 4} except {1, 2, 3} (excluded
because 1+2 = 3), {1, 3, 4} (excluded because 1+3 = 4), and {1, 2, 3, 4} (excluded for both reasons.)
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Plus@@@Subsets[#,{2,Length[#]}]]=={}&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)

Extensions

a(0) = 1 prepended by Gus Wiseman, Jun 07 2019

A085489 a(n) is the number of subsets of {1,...,n} containing no solutions to x+y=z with x and y distinct (one version of "sum-free subsets").

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 37, 61, 102, 162, 261, 410, 646, 1001, 1553, 2370, 3645, 5515, 8303, 12470, 18713, 27811, 41244, 60962, 89733, 131870, 192522, 281125, 408680, 593880, 855661, 1238592, 1779614, 2563476, 3660084, 5255913, 7473380, 10696444, 15137517
Offset: 0

Views

Author

Eric W. Weisstein, Jul 02 2003

Keywords

Comments

First differs from A151897 at a(7) = 61, A151897(7) = 60. The one subset counted under a(7) but not under A151897(7) is {1,2,4,7}. - Gus Wiseman, Jun 07 2019

Examples

			From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
The a(5) = 22 subsets:
  {}  {1}  {1,2}  {1,2,4}
      {2}  {1,3}  {1,2,5}
      {3}  {1,4}  {1,3,5}
      {4}  {1,5}  {2,3,4}
      {5}  {2,3}  {2,4,5}
           {2,4}  {3,4,5}
           {2,5}
           {3,4}
           {3,5}
           {4,5}
(End)
		

Crossrefs

See A007865 for another version.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[ #,Select[ Plus@@@ Subsets[ #,{2}],#<=n&]]=={}&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)

Formula

a(n) = 2^n - A088809(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

More terms from Reinhard Zumkeller, Jul 13 2003
Edited by David Wasserman, Apr 16 2008
a(0) = 1 prepended by Gus Wiseman, Jun 07 2019

A051026 Number of primitive subsequences of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 17, 33, 45, 73, 103, 205, 253, 505, 733, 1133, 1529, 3057, 3897, 7793, 10241, 16513, 24593, 49185, 59265, 109297, 163369, 262489, 355729, 711457, 879937, 1759873, 2360641, 3908545, 5858113, 10534337, 12701537, 25403073, 38090337, 63299265, 81044097, 162088193, 205482593, 410965185, 570487233, 855676353
Offset: 0

Views

Author

Keywords

Comments

a(n) counts all subsequences of {1, ..., n} in which no term divides any other. If n is a prime a(n) = 2*a(n-1)-1 because for each subsequence s counted by a(n-1) two different subsequences are counted by a(n): s and s,n. There is only one exception: 1,n is not a primitive subsequence because 1 divides n. For all n>1: a(n) < 2*a(n-1). - Alois P. Heinz, Mar 07 2011
Maximal primitive subsets are counted by A326077. - Gus Wiseman, Jun 07 2019

Examples

			a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4).
a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5).
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {2,3}  {4}    {4}
                       {2,3}  {5}
                       {3,4}  {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {2,3,5}
                              {3,4,5}
a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {1,2}  {1,2}    {1,3}      {1,3}
                  {1,3}    {1,4}      {1,4}
                  {1,2,3}  {1,2,4}    {1,5}
                           {1,3,4}    {1,2,4}
                           {1,2,3,4}  {1,3,4}
                                      {1,3,5}
                                      {1,4,5}
                                      {1,2,3,4}
                                      {1,2,4,5}
                                      {1,3,4,5}
                                      {1,2,3,4,5}
Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {2}    {2}      {3}        {3}
           {1,2}  {3}      {4}        {4}
                  {2,3}    {2,4}      {5}
                  {1,2,3}  {3,4}      {2,4}
                           {2,3,4}    {3,4}
                           {1,2,3,4}  {3,5}
                                      {4,5}
                                      {2,3,4}
                                      {2,4,5}
                                      {3,4,5}
                                      {2,3,4,5}
                                      {1,2,3,4,5}
(End)
From _Gus Wiseman_, Mar 12 2024: (Start)
Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {1,2}  {1,2}    {1,2}      {1,2}
                  {1,3}    {1,3}      {1,3}
                  {1,2,3}  {1,2,3}    {1,5}
                           {1,2,4}    {1,2,3}
                           {1,2,3,4}  {1,2,4}
                                      {1,2,5}
                                      {1,3,5}
                                      {1,2,3,4}
                                      {1,2,3,5}
                                      {1,2,4,5}
                                      {1,2,3,4,5}
(End)
		

References

  • Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 320. - N. J. A. Sloane, Apr 06 2012

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(s) option remember; local n;
          n:= max(s[]);
          `if`(n<0, 1, b(s minus {n}) + b(s minus divisors(n)))
        end:
    bb:= n-> b({$2..n} minus divisors(n)):
    sb:= proc(n) option remember; `if`(n<2, 0, bb(n) + sb(n-1)) end:
    a:= n-> `if`(n=0, 1, `if`(isprime(n), 2*a(n-1)-1, 2+sb(n))):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
  • Mathematica
    b[s_] := b[s] = With[{n=Max[s]}, If[n < 0, 1, b[Complement[s, {n}]] + b[Complement[s, Divisors[n]]]]];
    bb[n_] := b[Complement[Range[2, n], Divisors[n]]];
    sb[n_] := sb[n] = If[n < 2, 0, bb[n] + sb[n-1]];
    a[n_] := If[n == 0, 1, If[PrimeQ[n], 2a[n-1] - 1, 2 + sb[n]]]; Table[a[n], {n, 0, 37}]
    (* Jean-François Alcover, Jul 27 2011, converted from Maple *)
    Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Select[Union@@Table[#*i,{i,n}],#<=n&]]&]],{n,10}] (* Gus Wiseman, Jun 07 2019 *)
    Table[Length[Select[Subsets[Range[n]], #==Union@@Divisors/@#&]],{n,0,10}] (* Gus Wiseman, Mar 12 2024 *)

Extensions

More terms from David Wasserman, May 02 2002
a(32)-a(37) from Donovan Johnson, Aug 11 2010

A326489 Number of product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 44, 88, 136, 252, 504, 896, 1792, 3392, 6352, 9720, 19440, 35664, 71328, 129952, 247232, 477664, 955328, 1700416, 2657280, 5184000, 10368000, 19407360, 38814720, 68868352, 137736704, 260693504, 505830400, 999641600, 1882820608, 2807196672
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.

Examples

			The a(0) = 1 through a(6) = 22 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,4,6}
                                      {3,5,6}
                                      {4,5,6}
                                      {3,4,5,6}
		

Crossrefs

Product-closed subsets are A326076.
Subsets containing no products are A326114.
Subsets containing no products of distinct elements are A326117.
Subsets containing no quotients are A327591.
Maximal product-free subsets are A326496.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]],{n,10}]

Extensions

a(21)-a(36) from Andrew Howroyd, Aug 25 2019
a(0)=1 prepended to data, example and b-file by Peter Kagey, Sep 18 2019

A326496 Number of maximal product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is product-free if it contains no product of two (not necessarily distinct) elements.
Also the number of maximal quotient-free subsets of {1..n}.

Examples

			The a(2) = 1 through a(10) = 6 subsets (A = 10):
  {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}   {23578}
             {34}  {345}  {256}   {2567}   {25678}   {256789}  {2378A}
                          {3456}  {34567}  {345678}  {345678}  {256789}
                                                     {456789}  {26789A}
                                                               {345678A}
                                                               {456789A}
		

Crossrefs

Product-free subsets are A326489.
Subsets without products of distinct elements are A326117.
Maximal sum-free subsets are A121269.
Maximal sum-free and product-free subsets are A326497.
Maximal subsets without products of distinct elements are A325710.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(18)-a(55) from Andrew Howroyd, Aug 30 2019

A326081 Number of subsets of {1..n} containing the product of any set of distinct elements whose product is <= n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 56, 112, 200, 400, 728, 1456, 2368, 4736, 8896, 16112, 30016, 60032, 105472, 210944, 366848, 679680, 1327232, 2654464, 4434176, 8868352, 17488640, 33118336, 60069248, 120138496, 206804224, 413608448, 759882880, 1461600128, 2909298496, 5319739328
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

For n > 0, this sequence divided by 2 first differs from A326116 at a(12)/2 = 1184, A326116(12) = 1232.
If A326117 counts product-free sets, this sequence counts product-closed sets.
The non-strict case is A326076.

Examples

			The a(6) = 56 subsets:
  {}  {1}  {1,2}  {1,2,4}  {1,2,3,6}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {2}  {1,3}  {1,2,5}  {1,2,4,5}  {1,2,3,5,6}
      {3}  {1,4}  {1,2,6}  {1,2,4,6}  {1,2,4,5,6}
      {4}  {1,5}  {1,3,4}  {1,2,5,6}  {1,3,4,5,6}
      {5}  {1,6}  {1,3,5}  {1,3,4,5}  {2,3,4,5,6}
      {6}  {2,4}  {1,3,6}  {1,3,4,6}
           {2,5}  {1,4,5}  {1,3,5,6}
           {2,6}  {1,4,6}  {1,4,5,6}
           {3,4}  {1,5,6}  {2,3,4,6}
           {3,5}  {2,3,6}  {2,3,5,6}
           {3,6}  {2,4,5}  {2,4,5,6}
           {4,5}  {2,4,6}  {3,4,5,6}
           {4,6}  {2,5,6}
           {5,6}  {3,4,5}
                  {3,4,6}
                  {3,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]

Formula

For n > 0, a(n) = 2 * A308542(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019

A326495 Number of subsets of {1..n} containing no sums or products of pairs of elements.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 30, 45, 71, 101, 171, 258, 427, 606, 988, 1328, 2141, 3116, 4952, 6955, 11031, 15320, 23978, 33379, 48698, 66848, 104852, 144711, 220757, 304132, 461579, 636555, 973842, 1316512, 1958827, 2585432, 3882842, 5237092, 7884276, 10555738, 15729292
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

The pairs are not required to be strict.

Examples

			The a(1) = 1 through a(6) = 17 subsets:
  {}  {}   {}     {}     {}       {}
      {2}  {2}    {2}    {2}      {2}
           {3}    {3}    {3}      {3}
           {2,3}  {4}    {4}      {4}
                  {2,3}  {5}      {5}
                  {3,4}  {2,3}    {6}
                         {2,5}    {2,3}
                         {3,4}    {2,5}
                         {3,5}    {2,6}
                         {4,5}    {3,4}
                         {3,4,5}  {3,5}
                                  {4,5}
                                  {4,6}
                                  {5,6}
                                  {2,5,6}
                                  {3,4,5}
                                  {4,5,6}
		

Crossrefs

Subsets without sums are A007865.
Subsets without products are A326489.
Subsets without differences or quotients are A326490.
Maximal subsets without sums or products are A326497.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]],{n,0,10}]

Formula

For n > 0, a(n) = A326490(n) - 1.

Extensions

a(19)-a(41) from Andrew Howroyd, Aug 25 2019

A326497 Number of maximal sum-free and product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 15, 21, 26, 38, 51, 69, 89, 119, 149, 197, 261, 356, 447, 601, 781, 1003, 1293, 1714, 2228, 2931, 3697, 4843, 6258, 8187, 10273, 13445, 16894, 21953, 27469, 35842, 45410, 58948, 73939, 95199, 120593, 154510, 192995, 247966, 312642
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is sum-free and product-free if it contains no sum or product of two (not necessarily distinct) elements.

Examples

			The a(2) = 1 through a(10) = 15 subsets (A = 10):
  {2}  {23}  {23}  {23}   {23}   {237}   {256}   {267}    {23A}
             {34}  {25}   {256}  {256}   {258}   {345}    {345}
                   {345}  {345}  {267}   {267}   {357}    {34A}
                          {456}  {345}   {345}   {2378}   {357}
                                 {357}   {357}   {2569}   {38A}
                                 {4567}  {2378}  {2589}   {2378}
                                         {4567}  {4567}   {2569}
                                         {5678}  {4679}   {2589}
                                                 {56789}  {267A}
                                                          {269A}
                                                          {4567}
                                                          {4679}
                                                          {479A}
                                                          {56789}
                                                          {6789A}
		

Crossrefs

Sum-free and product-free subsets are A326495.
Sum-free subsets are A007865.
Maximal sum-free subsets are A121269.
Product-free subsets are A326489.
Maximal product-free subsets are A326496.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 37, print1(A326497(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(21)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Oct 11 2020

A326116 Number of subsets of {2..n} containing no products of two or more distinct elements.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

First differs from A308542 at a(12) = 1232, A308542(12) = 1184.
If this sequence counts product-free sets, A308542 counts product-closed sets.

Examples

			The a(6) = 28 subsets:
  {}  {2}  {2,3}  {2,3,4}  {2,3,4,5}
      {3}  {2,4}  {2,3,5}  {2,4,5,6}
      {4}  {2,5}  {2,4,5}  {3,4,5,6}
      {5}  {2,6}  {2,4,6}
      {6}  {3,4}  {2,5,6}
           {3,5}  {3,4,5}
           {3,6}  {3,4,6}
           {4,5}  {3,5,6}
           {4,6}  {4,5,6}
           {5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}]
  • PARI
    a(n)={
       my(recurse(k, ep)=
        if(k > n, 1,
          my(t = self()(k + 1, ep));
          if(!bittest(ep,k),
             forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i))));
             t += self()(k + 1, ep);
          );
          t);
       );
       recurse(2, 2);
    } \\ Andrew Howroyd, Aug 25 2019

Formula

For n > 0, a(n) = A326117(n) - 1.

Extensions

Terms a(21)-a(36) from Andrew Howroyd, Aug 25 2019

A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 10 subsets:
  {1}  {1}  {1}    {1}    {1}      {1}      {1}        {1}        {1}
       {2}  {2,3}  {2,3}  {2,3}    {2,3}    {2,3,7}    {2,5,6}    {2,6,7}
                   {3,4}  {2,5}    {2,5,6}  {2,5,6}    {2,5,8}    {3,4,5}
                          {3,4,5}  {3,4,5}  {2,6,7}    {2,6,7}    {3,5,7}
                                   {4,5,6}  {3,4,5}    {3,4,5}    {2,3,7,8}
                                            {3,5,7}    {3,5,7}    {2,5,6,9}
                                            {4,5,6,7}  {2,3,7,8}  {2,5,8,9}
                                                       {4,5,6,7}  {4,5,6,7}
                                                       {5,6,7,8}  {4,6,7,9}
                                                                  {5,6,7,8,9}
		

Crossrefs

Subsets without differences or quotients are A326490.
Subsets with differences and quotients are A326494.
Maximal subsets without differences are A121269
Maximal subsets without quotients are A326492.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]

Formula

a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025
Showing 1-10 of 19 results. Next