cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A326622 Number of factorizations of n into factors > 1 with integer average.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 5, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 3, 3, 1, 1, 6, 2, 2, 2, 2, 1, 2, 2, 4, 2, 1, 1, 6, 1, 1, 3, 7, 2, 1, 1, 3, 2, 1, 1, 6, 1, 1, 3, 2, 2, 2, 1, 7, 5, 1, 1, 4, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 8, 1, 1, 3, 3, 1, 1, 1, 4, 5, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Examples

			The a(80) = 7 factorizations:
  (2*2*2*10)
  (2*2*20)
  (2*5*8)
  (2*40)
  (4*20)
  (8*10)
  (80)
		

Crossrefs

Partitions with integer average are A067538.
Strict partitions with integer average are A102627.
Heinz numbers of partitions with integer average are A316413.
Factorizations with integer geometric mean are A326028.
Cf. A001055, A051293, A078174, A078175, A326514, A326515, A326567/A326568, A326621, A326623, A326667 (= a(2^n)), A327906 (positions of 1's), A327907 (of terms > 1).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[Mean[#]]&]],{n,2,100}]
  • PARI
    A326622(n, m=n, facsum=0, facnum=0) = if(1==n,facnum > 0 && 1==denominator(facsum/facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326622(n/d, d, facsum+d, facnum+1))); (s)); \\ Antti Karttunen, Nov 10 2024

Extensions

Data section extended up to a(108), with missing term a(1)=0 also added (thus correcting the offset) - Antti Karttunen, Nov 10 2024

A321469 Number of factorizations of n into factors > 1 with different sums of prime indices. Number of multiset partitions of the multiset of prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 7, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 8, 1, 3, 3, 5, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(72) = 8 multiset partitions with distinct block-sums:
    {{1,1,1,2,2}}
   {{1},{1,1,2,2}}
   {{2},{1,1,1,2}}
   {{1,1},{1,2,2}}
   {{1,2},{1,1,2}}
   {{2,2},{1,1,1}}
  {{1},{2},{1,1,2}}
  {{1},{1,1},{2,2}}
Missing from this list are:
    {{1},{1},{1,2,2}}
    {{1},{1,2},{1,2}}
    {{2},{2},{1,1,1}}
    {{2},{1,1},{1,2}}
   {{1},{1},{1},{2,2}}
   {{1},{1},{2},{1,2}}
   {{1},{2},{2},{1,1}}
  {{1},{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[primeMS[n]],UnsameQ@@Sort[Total/@#]&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A321469(n, m=n, facs=List([])) = if(1==n, all_have_different_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321469(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326028 Number of factorizations of n into factors > 1 with integer geometric mean.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 15 2019

Keywords

Comments

First differs from A294336 and A316782 at a(36) = 5.

Examples

			The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power).
  (4)    (8)      (9)    (16)       (25)   (27)     (32)         (36)
  (2*2)  (2*2*2)  (3*3)  (2*8)      (5*5)  (3*3*3)  (2*2*2*2*2)  (4*9)
                         (4*4)                                   (6*6)
                         (2*2*2*2)                               (2*18)
                                                                 (3*12)
		

Crossrefs

Positions of terms > 1 are the perfect powers A001597.
Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer average and geometric mean are A326647.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}]
  • PARI
    A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ Antti Karttunen, Nov 10 2024

Formula

a(2^n) = A067538(n).

Extensions

a(89) onwards from Antti Karttunen, Nov 10 2024

A326515 Number of factorizations of n into factors > 1 where every factor has the same average of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(900) = 9 factorizations:
  (3*3*10*10),
  (3*3*100), (3*10*30), (9*10*10),
  (3*300), (9*100), (10*90), (30*30),
  (900).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@Mean/@primeMS/@#&]],{n,100}]
  • PARI
    avgpis(n) = { my(f=factor(n)); f[,1] = apply(primepi,f[,1]); (1/bigomega(n))*sum(i=1,#f~,f[i,2]*f[i,1]); };
    has_same_average_of_pis(facs) = if(!#facs, 1, my(avg=0); for(i=1,#facs,if(!avg, avg=avgpis(facs[i]), if(avg!=avgpis(facs[i]), return(0)))); (1));
    A326515(n, m=n, facs=List([])) = if(1==n, has_same_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A326515(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326517 Number of normal multiset partitions of weight n where each part has a different size.

Original entry on oeis.org

1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 12 normal multiset partitions:
  {}  {{1}}  {{1,1}}  {{1,1,1}}
             {{1,2}}  {{1,1,2}}
                      {{1,2,2}}
                      {{1,2,3}}
                      {{1},{1,1}}
                      {{1},{1,2}}
                      {{1},{2,2}}
                      {{1},{2,3}}
                      {{2},{1,1}}
                      {{2},{1,2}}
                      {{2},{1,3}}
                      {{3},{1,2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i))))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 23 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Length/@#&]],{n,0,6}]
  • PARI
    R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Feb 07 2020

A322794 Number of factorizations of n into factors > 1 where all factors have the same number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

Also the number of uniform multiset partitions of the multiset of prime indices of n, where a multiset partition is uniform if all parts have the same size.

Examples

			The a(1260) = 13 factorizations:
  (1260)  (18*70)   (4*9*35)   (2*2*3*3*5*7)
          (20*63)   (6*6*35)
          (28*45)   (4*15*21)
          (30*42)   (6*10*21)
          (12*105)  (6*14*15)
                    (9*10*14)
The a(1260) = 13 multiset partitions:
  {{1},{1},{2},{2},{3},{4}}
     {{1,1},{2,2},{3,4}}
     {{1,1},{2,3},{2,4}}
     {{1,2},{1,2},{3,4}}
     {{1,2},{1,3},{2,4}}
     {{1,2},{1,4},{2,3}}
     {{2,2},{1,3},{1,4}}
      {{1,1,2},{2,3,4}}
      {{1,2,2},{1,3,4}}
      {{1,1,3},{2,2,4}}
      {{1,1,4},{2,2,3}}
      {{1,2,3},{1,2,4}}
       {{1,1,2,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@PrimeOmega/@#&]],{n,100}]

A326516 Number of factorizations of n into factors > 1 where each factor has a different average of prime indices.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 8, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 5, 1, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(60) = 8 factorizations: (2*5*6), (3*4*5), (2*30), (3*20), (4*15), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@Mean/@primeMS/@#&]],{n,100}]
  • PARI
    avgpis(n) = { my(f=factor(n)); f[,1] = apply(primepi,f[,1]); (1/bigomega(n))*sum(i=1,#f~,f[i,2]*f[i,1]); };
    all_have_different_average_of_pis(facs) = if(!#facs, 1, (#Set(apply(avgpis,facs)) == #facs));
    A326516(n, m=n, facs=List([])) = if(1==n, all_have_different_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A326516(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326647 Number of factorizations of n into factors > 1 with integer average and integer geometric mean.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2019

Keywords

Examples

			The a(216) = 5 factorizations:
  (2*4*27)
  (3*3*24)
  (3*6*12)
  (6*6*6)
  (216)
The a(729) = 8 factorizations:
  (3*3*3*3*3*3)
  (3*3*81)
  (3*9*27)
  (3*243)
  (9*9*9)
  (9*81)
  (27*27)
  (729)
		

Crossrefs

Positions of terms > 1 are the perfect powers A001597.
Factorizations with integer average are A326622.
Factorizations with integer geometric mean are A326028.
Partitions with integer average and geometric mean are A326641.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,2,100}]

A326533 MM-numbers of multiset partitions where each part has a different length.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 53, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 86, 87, 89, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different Omega (number of prime factors counted with multiplicity). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average preceded by their MM-numbers begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  31: {{5}}
  34: {{},{4}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@PrimeOmega/@primeMS[#]&]
Showing 1-10 of 13 results. Next