cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A000798 Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.

Original entry on oeis.org

1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 18 2015 and Feb 28 2017: (Start)
a(p^k) == k+1 (mod p) for all primes p. This is proved by Kizmaz at On The Number Of Topologies On A Finite Set link. For proof see Theorem 2.4 in page 2 and 3. So a(19) == 2 (mod 19).
a(p+n) == A265042(n) (mod p) for all primes p. This is also proved by Kizmaz at related link, see Theorem 2.7 in page 4. If n=2 and p=17, a(17+2) == A265042(2) (mod 17), that is a(19) == 51 (mod 17). So a(19) is divisible by 17.
In conclusion, a(19) is a number of the form 323*n - 17. (End)
The BII-numbers of finite topologies without their empty set are given by A326876. - Gus Wiseman, Aug 01 2019
From Tian Vlasic, Feb 23 2022: (Start)
Although no general formula is known for a(n), by considering the number of topologies with a fixed number of open sets, it is possible to explicitly represent the sequence in terms of Stirling numbers of the second kind.
For example: a(n,3) = 2*S(n,2), a(n,4) = S(n,2) + 6*S(n,3), a(n,5) = 6*S(n,3) + 24*S(n,4).
Lower and upper bounds are known: 2^n <= a(n) <= 2^(n*(n-1)), n > 1.
This follows from the fact that there are 2^(n*(n-1)) reflexive relations on a set with n elements.
Furthermore: a(n+1) <= a(n)*(3a(n)+1). (End)

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
  {123}  {1}{123}   {1}{12}{123}  {1}{2}{12}{123}   {1}{2}{12}{13}{123}
         {2}{123}   {1}{13}{123}  {1}{3}{13}{123}   {1}{2}{12}{23}{123}
         {3}{123}   {1}{23}{123}  {2}{3}{23}{123}   {1}{3}{12}{13}{123}
         {12}{123}  {2}{12}{123}  {1}{12}{13}{123}  {1}{3}{13}{23}{123}
         {13}{123}  {2}{13}{123}  {2}{12}{23}{123}  {2}{3}{12}{23}{123}
         {23}{123}  {2}{23}{123}  {3}{13}{23}{123}  {2}{3}{13}{23}{123}
                    {3}{12}{123}
                    {3}{13}{123}        {1}{2}{3}{12}{13}{23}{123}
                    {3}{23}{123}
(End)
		

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
  • Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references concerning the enumeration of topologies and posets see under A001035.
  • G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.

Crossrefs

Row sums of A326882.
Cf. A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*A001035(k).
E.g.f.: A(exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
It is known that log_2(a(n)) ~ n^2/4. - Tian Vlasic, Feb 23 2022

Extensions

Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jun 10 2007

A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.

Original entry on oeis.org

1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of Moore families on an n-set, that is, families of subsets that contain the universal set {1,...,n} and are closed under intersection.
Or, number of closure operators on a set of n elements.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems on n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Jul 31 2019
From Bernhard Ganter, Jul 08 2025: (Start)
Also the number of union-free families of subsets of an n-set; i.e., families of nonempty sets on n elements such that no set is a union of some others.
Also the number of intersection-free families of subsets of an n-set; i.e., of families of proper subsets on n elements such that no set is an intersection of some others.
(Note that every union-free family on an n-set is the set of union-irreducible elements of exactly one union-closed family, and each family of union-irreducible elements is union-free. Same for intersection.) (End)

Examples

			From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For set-systems closed under union:
- The covering case is A102894.
- The unlabeled case is A193674.
- The case also closed under intersection is A306445.
- Set-systems closed under overlapping union are A326866.
- The BII-numbers of these set-systems are given by A326875.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*A102894(k), where C(n, k) is the binomial coefficient.
For asymptotics see A102897.
a(n) = A102897(n)/2. - Gus Wiseman, Jul 31 2019

Extensions

N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments from Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010

A306445 Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
Offset: 0

Views

Author

Yuan Yao, Feb 15 2019

Keywords

Examples

			For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.

Crossrefs

The covering case with {} is A000798.
The case closed under union only is A102897.
The case closed under intersection only is (also) A102897.
The BII-numbers of these set-systems are A326876.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
    a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
  • Python
    import math
    # Sequence A000798
    topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
    def nCr(n, r):
        return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
    for n in range(len(topo)):
        ans = 1
        for d in range(n+1):
            for i in range(d, n+1):
                ans += nCr(n,i) * nCr(i, i-d) * topo[d]
        print(n, ans)

Formula

a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024

Extensions

a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019

A326878 Number of topologies whose points are a subset of {1..n}.

Original entry on oeis.org

1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(0) = 1 through a(2) = 7 topologies:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Binomial transform of A000798 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}]
    (* Second program: *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}];
    a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)

Formula

From Geoffrey Critzer, Jul 12 2022: (Start)
E.g.f.: exp(x)*A(exp(x)-1) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..n} binomial(n,k)*A000798(k). (End)

A102897 Number of ACI algebras (or semilattices) on n generators.

Original entry on oeis.org

2, 4, 14, 122, 4960, 2771104, 151947502948, 28175296471414704944
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Also counts Horn functions on n variables, Boolean functions whose set of truth assignments are closed under 'and', or equivalently, the Boolean functions that can be written as a conjunction of Horn clauses, clauses with at most one negative literal.
Also, number of families of subsets of {1,...,n} that are closed under intersection (because we can throw in the universe, or take it out, without affecting anything else).
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of finite sets of finite subsets of {1..n} that are closed under union. - Gus Wiseman, Aug 03 2019

Examples

			a(2) = 14: Let the points be labeled a, b. We want the number of collections of subsets of {a, b} which are closed under intersection. 0 subsets: 1 way ({}), 1 subset: 4 ways (0; a; b; ab), 2 subsets: 5 ways (0,a; 0,b; 0,ab; a,ab; b,ab) [not a,b because their intersection, 0, would be missing], 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 14.
From _Gus Wiseman_, Aug 03 2019: (Start)
The a(0) = 2 through a(2) = 14 sets of subsets closed under union:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • V. B. Alekseev, On the number of intersection semilattices [in Russian], Diskretnaya Mat. 1 (1989), 129-136.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleitman and A. A. Sapozhenko, On the number of closure operations, in Combinatorics, Paul Erdős is Eighty (Volume 1), Keszthely: Bolyai Society Mathematical Studies, 1993, 91-105.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
  • Alfred Horn, Journal of Symbolic Logic 16 (1951), 14-21. [See Lemma 7.]
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For nonempty set systems of the same type, see A121921.
Regarding sets of subsets closed under union:
- The case with an edge containing all of the vertices is A102895.
- The case without empty edges is A102896.
- The case with intersection instead of union is (also) A102897.
- The unlabeled version is A193675.
- The case closed under both union and intersection is A306445.
- The BII-numbers of set-systems closed under union are A326875.
- The covering case is A326906.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 03 2019 *)

Formula

a(n) = 2*A102896(n) = Sum_{k=0..n} C(n, k)*A102895(k), where C(n, k) is the binomial coefficient
Asymptotically, log_2 a(n) ~ binomial(n, floor(n/2)) for all of A102894, A102895, A102896 and this sequence [Alekseev; Burosch et al.]

Extensions

Additional comments from Don Knuth, Jul 01 2005

A326867 Number of unlabeled connectedness systems on n vertices.

Original entry on oeis.org

1, 2, 6, 30, 466, 80926, 1689195482
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 30 connectedness systems:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{1},{2}}        {{1},{2}}
             {{2},{1,2}}      {{1,2,3}}
             {{1},{2},{1,2}}  {{1},{2,3}}
                              {{2},{1,2}}
                              {{1},{2},{3}}
                              {{3},{1,2,3}}
                              {{1},{2},{1,2}}
                              {{1},{3},{2,3}}
                              {{2,3},{1,2,3}}
                              {{2},{3},{1,2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3}}
                              {{3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{1,3},{2,3},{1,2,3}}
                              {{1},{3},{2,3},{1,2,3}}
                              {{2},{3},{2,3},{1,2,3}}
                              {{2},{1,3},{2,3},{1,2,3}}
                              {{3},{1,3},{2,3},{1,2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,3},{2,3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case without singletons is A072444.
The labeled case is A326866.
The connected case is A326869.
Partial sums of A326871 (the covering case).

Extensions

a(5) from Andrew Howroyd, Aug 10 2019
a(6) from Andrew Howroyd, Oct 28 2023

A072446 Number of connectedness systems on n vertices that contain all singletons.

Original entry on oeis.org

1, 1, 2, 12, 420, 254076, 18689059680
Offset: 0

Views

Author

Wim van Dam (vandam(AT)cs.berkeley.edu), Jun 18 2002

Keywords

Comments

From Gus Wiseman, Jul 31 2019: (Start)
If we define a connectedness system to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges, then a(n) is the number of connectedness systems on n vertices without singleton edges. The BII-numbers of these set-systems are given by A326873. The a(3) = 12 connectedness systems without singletons are:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
(End)

Examples

			a(3)=12 because of the 12 sets:
{{1}, {2}, {3}};
{{1}, {2}, {3}, {1, 2}};
{{1}, {2}, {3}, {1, 3}};
{{1}, {2}, {3}, {2, 3}};
{{1}, {2}, {3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}};
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
		

Crossrefs

The unlabeled case is A072444.
Exponential transform of A072447 (the connected case).
The case with singletons is A326866.
Binomial transform of A326877 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = A326866(n)/2^n. - Gus Wiseman, Jul 31 2019

Extensions

a(6) corrected and definition reformulated by Christian Sievers, Oct 26 2023
a(0)=1 prepended by Sean A. Irvine, Oct 02 2024

A072447 Number of connectedness systems on n vertices that contain all singletons and the set of all the vertices.

Original entry on oeis.org

1, 1, 8, 378, 252000, 18687534984
Offset: 1

Views

Author

Wim van Dam (vandam(AT)cs.berkeley.edu), Jun 18 2002

Keywords

Comments

Previous name was: a(1) = 1; for n > 1, a(n) = number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under union of nondisjoint sets, and contain no singletons.
A connectedness system is (as below) a set of (finite) nonempty sets that is closed under union of nondisjoint sets.
The old definition was: "Number of subsets S of the power set P{1,2,...,n} such that: {1}, {2},..., {n} are all elements of S; {1,2,...n} is an element of S; if X and Y are elements of S and X and Y have a nonempty intersection, then the union of X and Y is an element of S."
Comments on the old definition from Gus Wiseman, Aug 01 2019: (Start)
If this sequence were defined similarly to A326877, we would have a(1) = 0.
We define a connectedness system to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is connected if it is empty or contains an edge with all the vertices. a(n) is the number of connected connectedness systems on n vertices without singletons. For example, the a(3) = 8 connected connectedness systems without singletons are:
{{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
(End)
Conjecture concerning the original definition: a(n) is also the number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under intersection and contain no sets of cardinality n-1. - Tian Vlasic, Nov 04 2022. [This was false, as pointed out by Christian Sievers, Oct 20 2023. It is easy to see that for n>1, a(n) is also the number of families of subsets of {1, ..., n} that contain both the universe and the empty set, are closed under union of nondisjoint sets, and contain no singletons; whereas by duality, the sequence suggested in the conjecture is also the number of those families that are also closed under arbitrary union. For details see the Sievers link. - N. J. A. Sloane, Oct 21 2023]

Examples

			a(3) = 8 because of the 8 sets: {{1}, {2}, {3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
		

Crossrefs

The unlabeled case is A072445.
The non-connected case is A072446.
The case with singletons is A326868.
The covering version is A326877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],(n==0||MemberQ[#,Range[n]])&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}] (* returns a(1) = 0 similar to A326877. - Gus Wiseman, Aug 01 2019 *)

Formula

a(n > 1) = A326868(n)/2^n. - Gus Wiseman, Aug 01 2019

Extensions

Edited by N. J. A. Sloane, Oct 21 2023 (a(6) corrected by Christian Sievers, Oct 20 2023)
Edited by Christian Sievers, Oct 26 2023

A326872 BII-numbers of connectedness systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is given by A326870.

Examples

			The sequence of all connectedness systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  18: {{2},{1,3}}
  19: {{1},{2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  26: {{2},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  32: {{2,3}}
		

Crossrefs

Connectedness systems are counted by A326866, with unlabeled version A326867.
The case without singletons is A326873.
The connected case is A326879.
Set-systems closed under union are counted by A102896, with BII numbers A326875.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connsysQ[eds_]:=SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,100],connsysQ[bpe/@bpe[#]]&]
  • Python
    from itertools import count, islice, combinations
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            E,f = [bin_i(k) for k in bin_i(n)],0
            for i in combinations(E,2):
                if list(set(i[0])|set(i[1])) not in E and len(set(i[0])&set(i[1])) > 0:
                    f += 1
                    break
            if f < 1:
                yield n
    A326872_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025

A326870 Number of connectedness systems covering n vertices.

Original entry on oeis.org

1, 1, 5, 77, 6377, 8097721, 1196051135917
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is covering if every vertex belongs to some edge.

Examples

			The a(2) = 5 connectedness systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Inverse binomial transform of A326866 (the non-covering case).
Exponential transform of A326868 (the connected case).
The unlabeled case is A326871.
The BII-numbers of these set-systems are A326872.
The case without singletons is A326877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]

Extensions

a(6) corrected by Christian Sievers, Oct 28 2023
Showing 1-10 of 26 results. Next