cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A157037 Numbers with prime arithmetic derivative A003415.

Original entry on oeis.org

6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2009

Keywords

Comments

Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019

Examples

			A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
		

Crossrefs

Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.

Programs

  • Haskell
    a157037 n = a157037_list !! (n-1)
    a157037_list = filter ((== 1) . a010051' . a003415) [1..]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, factorint
    def A157037_gen(): # generator of terms
        return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), count(2))
    A157037_list = list(islice(A157037_gen(),20)) # Chai Wah Wu, Jun 23 2022

Formula

A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019

A328310 a(n) = A051903(A003415(n)) - A051903(n).

Original entry on oeis.org

-1, -1, 0, -1, 0, -1, -1, -1, 0, -1, 2, -1, 1, 2, 1, -1, -1, -1, 1, 0, 0, -1, -1, -1, 0, 0, 3, -1, 0, -1, -1, 0, 0, 1, 0, -1, 0, 3, -1, -1, 0, -1, 2, -1, 1, -1, 0, -1, 0, 1, 1, -1, 1, 3, -1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 1, 0, 0, -1, -1, -1, 0, -1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 4, -1, -1, -1, 1, 3, 0, 1, 2
Offset: 2

Views

Author

Antti Karttunen, Oct 13 2019

Keywords

Crossrefs

One less than A328311.

Programs

Formula

a(n) = A051903(A003415(n)) - A051903(n).
a(n) = A328311(n) - 1.

A328320 Numbers for which A328311(n) = 1 + A051903(A003415(n)) - A051903(n) is zero (including 1 as the initial term).

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 17, 18, 19, 23, 24, 25, 29, 31, 32, 37, 40, 41, 43, 45, 47, 49, 53, 56, 59, 61, 63, 67, 71, 72, 73, 75, 79, 81, 83, 88, 89, 90, 96, 97, 98, 101, 103, 104, 107, 109, 113, 117, 120, 121, 125, 126, 127, 128, 131, 136, 137, 139, 147, 149, 150, 151, 152, 153, 157, 160, 162, 163, 167, 168, 169
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2019

Keywords

Comments

After 1, the numbers whose "degree" (maximal exponent, A051903) is decremented by one when arithmetic derivative (A003415) is applied to them.

Crossrefs

Indices of zeros in A328311.
Cf. A328321 (complement), A328252 (a subsequence).

Programs

A328311 a(n) = 1 + A051903(A003415(n)) - A051903(n), a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 2, 3, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 4, 0, 1, 0, 0, 1, 1, 2, 1, 0, 1, 4, 0, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 2, 2, 0, 2, 4, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 1, 1, 0, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 1, 2, 5, 0, 0, 0, 2, 4, 1, 2, 3, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2019

Keywords

Comments

All terms are nonnegative because taking the arithmetic derivative (A003415) of n may decrease its "degree" (i.e., its maximal exponent, A051903) by at most one, and in many cases may also increase it, or keep it same.

Crossrefs

One more than A328310.
Cf. A328320 (indices of zeros), A328321 (of nonzero terms).

Programs

Formula

a(1) = 0, for n > 1, a(n) = 1 + A051903(A003415(n)) - A051903(n).
For n > 1, a(n) = 1 + A328310(n).

A328305 Numbers that are cubefree, but not squarefree and whose first arithmetic derivative is not squarefree, but some k-th (with k >= 2) derivative is.

Original entry on oeis.org

50, 99, 207, 306, 531, 549, 725, 747, 819, 931, 1083, 1175, 1611, 1775, 1899, 2057, 2075, 2299, 2331, 2367, 2499, 2525, 2842, 2853, 2891, 3425, 3577, 3610, 3771, 3789, 3843, 4059, 4149, 4311, 4475, 4575, 4626, 4693, 4775, 4998, 5239, 5274, 5341, 5547, 5634, 5706, 5715, 5746, 5819, 5949, 6147, 6223, 6275, 6381, 6413, 6475, 6575
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2019

Keywords

Comments

Numbers n for which A051903(n) = 2 and A328248(n) > 2.

Examples

			50 is not squarefree, as 50 = 2 * 5^2, and neither its arithmetic derivative A003415(50) = 45 = 3^2 * 5 is squarefree, but its second derivative A003415(45) = 39 = 3*13 is, thus 50 is included in this sequence.
		

Crossrefs

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
    isA067259(n) = (2==A051903(n));
    isA328305(n) = (isA067259(n)&&(A328248(n)>2));

A328304 Numbers that are cubefree, but not squarefree and whose arithmetic derivative is not squarefree.

Original entry on oeis.org

4, 12, 20, 28, 36, 44, 50, 52, 60, 68, 76, 84, 92, 99, 100, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 207, 212, 220, 225, 228, 236, 244, 252, 260, 268, 275, 276, 284, 292, 300, 306, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428, 436, 441, 444, 452, 460, 468, 476, 484, 492, 508, 516, 524, 525
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2019

Keywords

Comments

Numbers n for which A051903(n) = 2 and A051903(A003415(n)) > 1.

Examples

			4 = 2^2 is cubefree but not squarefree, and its arithmetic derivative A003415(4) = 4 is not squarefree, thus 4 is included in this sequence.
225 = 3^2 * 5^2 is cubefree but not squarefree, and its arithmetic derivative A003415(225) = 240 = 2^4 * 3 * 5 is not squarefree, thus 225 is included in this sequence.
		

Crossrefs

Intersection of A067259 and A328303. Intersection of A067259 and A328321.
Cf. A328305 (a subsequence).

Programs

A328302 For n > 1, a(n) is the least number > 0 for which it takes n-2 steps to reach a squarefree number by applying arithmetic derivative (A003415) zero or multiple times. a(1) = 4 is the least number for which no squarefree number is ever reached.

Original entry on oeis.org

4, 1, 9, 50, 306, 5831, 20230, 52283, 286891, 10820131, 38452606
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2019

Keywords

Comments

The least number k such that A328248(k) = n. After the initial two terms, probably also the positions of records in A328248, that is, it is conjectured that the records in A328248 appear in order, with each new record one larger than previous.
No other terms below 2^30.

Examples

			a(2) = 1 is the least number that is squarefree already at the "zeroth derivative".
52283 = 7^2 * 11 * 97 is not squarefree, and applying A003415 successively 1-6 times yields numbers 20230, 19431, 14250, 21175, 15345, 15189. Only the last one of these 15189 = 3*61*83 is squarefree, and there are no numbers < 52283 that would produce as long (6) finite chain of nonsquarefree numbers, thus a(2+6) = 52283.
		

Crossrefs

The leftmost column in A328250.

A328385 If n is of the form p^p, a(n) = n, otherwise a(n) is the first number found by iterating the map x -> A003415(x) that is different from n and either a prime, or whose degree (A051903) differs from the degree of n.

Original entry on oeis.org

0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 7, 13, 1, 44, 10, 8, 27, 32, 1, 31, 1, 80, 9, 19, 12, 96, 1, 7, 16, 68, 1, 41, 1, 48, 39, 25, 1, 608, 14, 39, 20, 56, 1, 81, 16, 92, 13, 31, 1, 96, 1, 9, 51, 640, 18, 61, 1, 72, 8, 59, 1, 156, 1, 16, 55, 80, 18, 71, 1, 3424, 108, 43, 1, 128, 13, 45, 32, 140, 1, 123, 20, 96, 19
Offset: 1

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Examples

			For n = 3, 3 is a prime, thus a(3) = 1.
For n = 4, A003415(4) = 4, thus as it is among the fixed points of A003415 and a(4) = 4.
For n = 8 = 2^3, its "degree" is A051903(33) = 3, but A003415(8) = 12 = 2^2 * 3, with degree 2, thus a(8) = 12.
For n = 21 = 3*7, A051903(21) = 1, the first derivative A003415(21) = 10 = 2*5 is of the same degree as A051903(10) = 1, but then continuing, we have A003415(10) = 7, which is a prime, thus a(21) = 7.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, different from the initial degree, thus a(33) = 9.
		

Crossrefs

Cf. A328384 (the number of iterations needed to reach such a number).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328385(n) = { my(d=A051903(n), u=A003415(n)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, n = u; u = A003415(u)); (u); };

Formula

a(1) = 0 [as here the degrees of 0 and 1 are considered different].
a(p) = 1 for all primes.
a(A051674(n)) = A051674(n).
a(A157037(n)) = A003415(A157037(n)), a prime.
a(A328252(n)) = A003415(A328252(n)), a squarefree number.
a(n) = A003415^(k)(n), when k = abs(A328384(n)). [Taking the abs(A328384(n))-th arithmetic derivative of n gives a(n)]

A342003 Maximal exponent in the prime factorization of the arithmetic derivative of n: a(n) = A051903(A003415(n)).

Original entry on oeis.org

0, 0, 2, 0, 1, 0, 2, 1, 1, 0, 4, 0, 2, 3, 5, 0, 1, 0, 3, 1, 1, 0, 2, 1, 1, 3, 5, 0, 1, 0, 4, 1, 1, 2, 2, 0, 1, 4, 2, 0, 1, 0, 4, 1, 2, 0, 4, 1, 2, 2, 3, 0, 4, 4, 2, 1, 1, 0, 2, 0, 1, 1, 6, 2, 1, 0, 3, 1, 1, 0, 2, 0, 1, 1, 4, 2, 1, 0, 4, 3, 1, 0, 2, 1, 2, 5, 2, 0, 1, 2, 5, 1, 2, 3, 4, 0, 1, 2, 2, 0, 1, 0, 2, 1
Offset: 2

Views

Author

Antti Karttunen, Mar 01 2021

Keywords

Crossrefs

Cf. A000040 (indices of zeros), A328234 (of ones), A328393 (of the terms < 2).

Programs

Formula

a(n) = A051903(A003415(n)).
a(n) = A051903(n) + A328310(n).
a(n) = 1 iff A341994(n) = 1.
Showing 1-10 of 10 results.