A060818
a(n) = 2^(n - HammingWeight(n)) = 2^(n - BitCount(n)) = 2^(n - A000120(n)).
Original entry on oeis.org
1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, 1024, 1024, 2048, 2048, 32768, 32768, 65536, 65536, 262144, 262144, 524288, 524288, 4194304, 4194304, 8388608, 8388608, 33554432, 33554432, 67108864, 67108864, 2147483648, 2147483648, 4294967296
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001
G.f. = 1 + x + 2*x^2 + 2*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 16*x^7 + 128*x^8 + ...
e(n,n) sequence begins 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... .
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, 87(2) (2014), 135-143.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49(3) (2002), 311-317.
- Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Index to divisibility sequences
-
[1] cat [Denominator(Catalan(n)/2^n): n in [0..50]]; // Vincenzo Librandi, Sep 01 2014
(Python 3.10+)
def A060818(n): return 1<Chai Wah Wu, Jul 11 2022
-
e := proc(l,m) local k; add(2^(k-2*m) * binomial(2*m-2*k,m-k) * binomial(m+k,m) * binomial(k,l), k=l..m); end;
A060818 := proc(n) option remember; `if`(n=0,1,2^(padic[ordp](n,2))*A060818(n-1)) end: seq(A060818(i), i=0..34); # Peter Luschny, Nov 16 2012
HammingWeight := n -> add(convert(n, base, 2)):
seq(2^(n - HammingWeight(n)), n = 0..34); # Peter Luschny, Mar 23 2024
-
Table[GCD[w!, 2^w], {w, 100}]
(* Second program, more efficient *)
Array[2^(# - DigitCount[#, 2, 1]) &, 35, 0] (* Michael De Vlieger, Mar 23 2024 *)
-
{a(n) = denominator( polcoeff( pollegendre(n), n))};
-
{a(n) = if( n<0, 0, 2^sum(k=1, n, n\2^k))};
-
{ for (n=0, 200, s=0; d=2; while (n>=d, s+=n\d; d*=2); write("b060818.txt", n, " ", 2^s); ) } \\ Harry J. Smith, Jul 12 2009
-
def A060818(n):
A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
return 2^A005187(n//2)
[A060818(i) for i in (0..34)] # Peter Luschny, Nov 16 2012
A223549
Triangle T(n,k), read by rows, giving the numerator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <=n.
Original entry on oeis.org
1, 3, 1, 21, 15, 3, 77, 43, 35, 5, 1155, 885, 1095, 315, 35, 4389, 8589, 7161, 777, 693, 63, 33649, 80353, 42245, 12285, 16485, 3003, 231, 129789, 91635, 233001, 170145, 152625, 20889, 6435, 429, 4023459, 3283533, 9804465, 8625375, 9695565, 1772199, 819819, 109395, 6435, 15646785, 58019335, 49782755, 25638305, 69324255, 31726695, 9794785, 245245, 230945, 12155
Offset: 0
P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
As a result, integral_{y = 0..infinity} dy/(y^4 + 2*x*y + 1)^4 = Pi * P_3(x)/(2^(3 + (3/2)) * (x + 1)^(3 + (1/2))) = Pi * (40*x^3 + 140*x^2 + 172*x + 77)/(32 * sqrt(2*(x + 1)^7)) for x > -1. - _Petros Hadjicostas_, May 22 2020
From _Bruno Berselli_, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
1;
3, 1;
21, 15, 3;
77, 43, 35, 5;
1155, 885, 1095, 315, 35;
4389, 8589, 7161, 777, 693, 63;
33649, 80353, 42245, 12285, 16485, 3003, 231;
129789, 91635, 233001, 170145, 152625, 20889, 6435, 429;
... (End)
- Vincenzo Librandi, Rows n = 0..50, flattened
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87.
-
/* As triangle: */ [[Numerator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
-
t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Numerator, {n, 0, 9}, {k, 0, n}] // Flatten
A223550
Triangle T(n,k), read by rows, giving the denominator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 8, 4, 2, 16, 4, 4, 2, 128, 32, 32, 16, 8, 256, 128, 64, 8, 16, 8, 1024, 512, 128, 32, 64, 32, 16, 2048, 256, 256, 128, 128, 32, 32, 16, 32768, 4096, 4096, 2048, 2048, 512, 512, 256, 128, 65536, 32768, 8192, 2048, 4096, 2048, 1024, 64, 256, 128
Offset: 0
P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
From _Bruno Berselli_, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins as follows:
1;
2, 1;
8, 4, 2;
16, 4, 4, 2;
128, 32, 32, 16, 8;
256, 128, 64, 8, 16, 8;
1024, 512, 128, 32, 64, 32, 16;
2048, 256, 256, 128, 128, 32, 32, 16;
32768, 4096, 4096, 2048, 2048, 512, 512, 256, 128;
65536, 32768, 8192, 2048, 4096, 2048, 1024, 64, 256, 128;
... (End)
- Vincenzo Librandi, Rows n = 0..50, flattened
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87.
-
/* As triangle: */ [[Denominator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
-
t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten
Original entry on oeis.org
1, 5, 63, 429, 12155, 88179, 1300075, 9694845, 583401555, 4418157975, 67282234305, 514589420475, 15801325804719, 121683714103007, 1879204156221315, 14544636039226909, 1804857108504066435
Offset: 1
-
seq(numer(binomial(2*n-3/2,-1/2)), n=1..20);
-
Numerator[Binomial[2Range[20]-3/2,-(1/2)]] (* Harvey P. Dale, Feb 27 2012 *)
A126936
Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.
Original entry on oeis.org
1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0
The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
1;
6, 4;
42, 60, 24;
308, 688, 560, 160;
2310, 7080, 8760, 5040, 1120;
17556, 68712, 114576, 99456, 44352, 8064;
...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Victor H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Victor H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin., no 2 (2007), #4.
-
A126936 := proc(m, l)
add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
end:
seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
-
t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)
Showing 1-5 of 5 results.
Comments