cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060818 a(n) = 2^(n - HammingWeight(n)) = 2^(n - BitCount(n)) = 2^(n - A000120(n)).

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, 1024, 1024, 2048, 2048, 32768, 32768, 65536, 65536, 262144, 262144, 524288, 524288, 4194304, 4194304, 8388608, 8388608, 33554432, 33554432, 67108864, 67108864, 2147483648, 2147483648, 4294967296
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001

Keywords

Comments

a(n) is the size of the Sylow 2-subgroup of the symmetric group S_n.
Also largest power of 2 which is a factor of n! and (apart from a(3)) the largest perfect power which is a factor of n!.
Denominator of e(n,n) (see Maple line).
Denominator of the coefficient of x^n in n-th Legendre polynomial; numerators are in A001790. - Benoit Cloitre, Nov 29 2002

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 16*x^7 + 128*x^8 + ...
e(n,n) sequence begins 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... .
		

Crossrefs

a(n) = A046161([n/2]).
Row sums of triangle A100258.

Programs

  • Magma
    [1] cat [Denominator(Catalan(n)/2^n): n in [0..50]]; // Vincenzo Librandi, Sep 01 2014
    (Python 3.10+)
    def A060818(n): return 1<Chai Wah Wu, Jul 11 2022
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m) * binomial(2*m-2*k,m-k) * binomial(m+k,m) * binomial(k,l), k=l..m); end;
    A060818 := proc(n) option remember; `if`(n=0,1,2^(padic[ordp](n,2))*A060818(n-1)) end: seq(A060818(i), i=0..34); # Peter Luschny, Nov 16 2012
    HammingWeight := n -> add(convert(n, base, 2)):
    seq(2^(n - HammingWeight(n)), n = 0..34); # Peter Luschny, Mar 23 2024
  • Mathematica
    Table[GCD[w!, 2^w], {w, 100}]
    (* Second program, more efficient *)
    Array[2^(# - DigitCount[#, 2, 1]) &, 35, 0] (* Michael De Vlieger, Mar 23 2024 *)
  • PARI
    {a(n) = denominator( polcoeff( pollegendre(n), n))};
    
  • PARI
    {a(n) = if( n<0, 0, 2^sum(k=1, n, n\2^k))};
    
  • PARI
    { for (n=0, 200, s=0; d=2; while (n>=d, s+=n\d; d*=2); write("b060818.txt", n, " ", 2^s); ) } \\ Harry J. Smith, Jul 12 2009
    
  • Sage
    def A060818(n):
        A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
        return 2^A005187(n//2)
    [A060818(i) for i in (0..34)]  # Peter Luschny, Nov 16 2012
    

Formula

a(n) = 2^(floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...).
a(n) = 2^(A011371(n)).
a(n) = gcd(n!, 2^n). - Labos Elemer, Apr 22 2003
a(n) = denominator(L(n)) with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n!, with the double factorial (2*n-1)!! = A001147(n), n>=0.
a(n) = Product_{i=1..n} A006519(i). - Tom Edgar, Apr 30 2014
a(n) = (n! XOR floor(n!/2)) XOR (n!-1 XOR floor((n!-1)/2)). - Gary Detlefs, Jun 13 2014
a(n) = denominator(Catalan(n-1)/2^(n-1)) for n>0. - Vincenzo Librandi, Sep 01 2014
a(2*n) = a(2*n+1) = 2^n*a(n). - Robert Israel, Sep 01 2014
a(n) = n!*A063079(n+1)/A334907(n). - Petros Hadjicostas, May 16 2020

Extensions

Additional comments from Henry Bottomley, May 01 2001
New name from Peter Luschny, Mar 23 2024

A223549 Triangle T(n,k), read by rows, giving the numerator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <=n.

Original entry on oeis.org

1, 3, 1, 21, 15, 3, 77, 43, 35, 5, 1155, 885, 1095, 315, 35, 4389, 8589, 7161, 777, 693, 63, 33649, 80353, 42245, 12285, 16485, 3003, 231, 129789, 91635, 233001, 170145, 152625, 20889, 6435, 429, 4023459, 3283533, 9804465, 8625375, 9695565, 1772199, 819819, 109395, 6435, 15646785, 58019335, 49782755, 25638305, 69324255, 31726695, 9794785, 245245, 230945, 12155
Offset: 0

Views

Author

Jean-François Alcover, Mar 22 2013

Keywords

Comments

From Petros Hadjicostas, May 21 2020: (Start)
Let P_n(x) = Sum_{k=0..n} (T(n,k)/A223550(n,k))*x^k be the Boros-Moll polynomial. It follows from the theory in Comtet (1967, pp. 81-83 and 85-86) that the polynomial Q_n(x) = 2^n*n!*P_n(x) has integer coefficients and satisfies the recurrence (x-1)*Q_n(x) = 2*(2*n - 1)*(x^2 - 2)*Q_{n-1}(x) + (16*(n-1)^2 - 1)*(x + 1)*Q_{n-2}(x).
We have integral_{y = 0..infinity} dy/(y^4 + 2*x*y + 1)^(n + 1) = Pi * P_n(x)/(2^(n + (3/2)) * (x + 1)^(n + (1/2))) = Pi * Q_n(x)/(2^(2*n + (3/2)) * n! * (x + 1)^(n + (1/2))) for x > -1 and n integer >= 0.
It also follows from the theory in Comtet (1967, pp. 81-83) that g(t) = (sqrt(x + sqrt(x^2 - 1 + t)) - sqrt(x - sqrt(x^2 - 1 + t))) / sqrt((1 - t) * (x^2 - 1 + t)) = Sum_{n >= 0} t^n * P_n(x)/(2^(n - (1/2)) * (x + 1)^(n + (1/2))) for x >= 1 and 0 <= t < 1.
From Comtet's result, we get g(t)^2 = 2*(x - sqrt(1-t))/((1-t) * (x^2 - 1 + t)) = 2/((1-t) * (x + sqrt(1-t))) = Sum_{n >= 0} (Sum_{k=0..n} P_k(x) * P_{n-k}(x)) / (2^(n-1) * (x+1)^(n+1)) * t^n for 0 <= t < 1 and x > 1. (End)

Examples

			P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
As a result, integral_{y = 0..infinity} dy/(y^4 + 2*x*y + 1)^4 = Pi * P_3(x)/(2^(3 + (3/2)) * (x + 1)^(3 + (1/2))) = Pi * (40*x^3 + 140*x^2 + 172*x + 77)/(32 * sqrt(2*(x + 1)^7)) for x > -1. - _Petros Hadjicostas_, May 22 2020
From _Bruno Berselli_, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
       1;
       3,     1;
      21,    15,      3;
      77,    43,     35,      5;
    1155,   885,   1095,    315,     35;
    4389,  8589,   7161,    777,    693,    63;
   33649, 80353,  42245,  12285,  16485,  3003,  231;
  129789, 91635, 233001, 170145, 152625, 20889, 6435, 429;
  ... (End)
		

Crossrefs

Cf. A067001, A223550 (denominators), A334907.

Programs

  • Magma
    /* As triangle: */ [[Numerator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
  • Mathematica
    t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Numerator, {n, 0, 9}, {k, 0, n}] // Flatten

Formula

T(n,k)/A223550(n,k) = 2^(-2*n)*Sum_{j=k..n} 2^j*binomial(2*n - 2*j, n - j)*binomial(n + j, j)*binomial(j, k) = 2^(-2*n)*A067001(n,n-k) for n >= 0 and k = 0..n.
P_n(x) = Sum_{k=0..n} (T(n, k)/A223550(n,k))*x^k = ((2*n)!/4^n/(n!)^2)*2F1([-n, n + 1], [1/2 - n], (x + 1)/2).
From Petros Hadjicostas, May 22 2020: (Start)
Recurrence for the polynomial: 4*n*(n - 1)*(x - 1)*P_n(x) = 4*(2*n - 1)*(n - 1)*(x^2 - 2)*P_{n-1}(x) + (16*(n - 1)^2 - 1)*(x + 1)*P_{n-2}(x).
O.g.f. for P_n(x): sqrt((x + 1)/(1 - 2*(x + 1)*w)/(x + sqrt(1 - 2*(x + 1)*w))). [It follows from Comtet's theory and my comments.]
P_n(1) = Sum_{k=0..n} T(n,k)/A223550(n,k) = A334907(n)/(2^n*n!). (End)

Extensions

Various sections and name edited by Petros Hadjicostas, May 22 2020

A223550 Triangle T(n,k), read by rows, giving the denominator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 8, 4, 2, 16, 4, 4, 2, 128, 32, 32, 16, 8, 256, 128, 64, 8, 16, 8, 1024, 512, 128, 32, 64, 32, 16, 2048, 256, 256, 128, 128, 32, 32, 16, 32768, 4096, 4096, 2048, 2048, 512, 512, 256, 128, 65536, 32768, 8192, 2048, 4096, 2048, 1024, 64, 256, 128
Offset: 0

Views

Author

Jean-François Alcover, Mar 22 2013

Keywords

Comments

As Chen and Xia (2009) state, the Boros-Moll polynomial P_n(x) can be viewed as a Jacobi polynomial P_n^{a,b}(x) with a = n + (1/2) and b = -(n + (1/2)). For more information about the relation of this polynomial P_n(x) to the theory in Comtet (1967, pp. 81-83 and 85-86), see my comments for A223549. - Petros Hadjicostas, May 22 2020

Examples

			P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
From _Bruno Berselli_, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins as follows:
      1;
      2,     1;
      8,     4,    2;
     16,     4,    4,    2;
    128,    32,   32,   16,    8;
    256,   128,   64,    8,   16,    8;
   1024,   512,  128,   32,   64,   32,   16;
   2048,   256,  256,  128,  128,   32,   32,  16;
  32768,  4096, 4096, 2048, 2048,  512,  512, 256, 128;
  65536, 32768, 8192, 2048, 4096, 2048, 1024,  64, 256, 128;
  ... (End)
		

Crossrefs

Cf. A067001, A223549 (numerators), A334907.

Programs

  • Magma
    /* As triangle: */ [[Denominator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
  • Mathematica
    t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten

Formula

A223549(n,k)/T(n,k) = 2^(-2*n)*Sum_{j=k..n} 2^j*binomial(2*n - 2*j, n - j)*binomial(n + j, j)*binomial(j, k) = 2^(-2*n)*A067001(n,n-k) for n >= 0 and k = 0..n.
P_n(x) = Sum_{k=0..n} (A223549(n,k)/T(n,k))*x^k = ((2*n)!/4^n/(n!)^2)*2F1([-n, n + 1], [1/2 - n], (x + 1)/2).
From Petros Hadjicostas, May 22 2020: (Start)
Recurrence for the polynomial: 4*n*(n - 1)*(x - 1)*P_n(x) = 4*(2*n - 1)*(n - 1)*(x^2 - 2)*P_{n-1}(x) + (16*(n - 1)^2 - 1)*(x + 1)*P_{n-2}(x).
P_n(1) = Sum_{k=0..n} A223549(n,k)/T(n,k) = A334907(n)/(2^n*n!). (End)

Extensions

Name edited by Petros Hadjicostas, May 22 2020

A063079 Bisection of A001790.

Original entry on oeis.org

1, 5, 63, 429, 12155, 88179, 1300075, 9694845, 583401555, 4418157975, 67282234305, 514589420475, 15801325804719, 121683714103007, 1879204156221315, 14544636039226909, 1804857108504066435
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2001

Keywords

Crossrefs

Cf. A001790, A060818, A334907. Other bisection gives A061548.

Programs

  • Maple
    seq(numer(binomial(2*n-3/2,-1/2)), n=1..20);
  • Mathematica
    Numerator[Binomial[2Range[20]-3/2,-(1/2)]] (* Harvey P. Dale, Feb 27 2012 *)

Formula

Numerators of binomial(2*n-3/2, -1/2).
Because A334907(n)/n! = a(n+1)/A060818(n) for n >= 0, the o.g.f. of a(n+1)/A060818(n), for n >= 0, is (sqrt(1 + sqrt(8*s)) - sqrt(1 - sqrt(8*s)))/sqrt(8*s * (1 - 8*s)), which is the e.g.f. of A334907 (see the link above for a proof). - Petros Hadjicostas, May 16 2020

Extensions

More terms from Vladeta Jovovic, Aug 07 2001

A126936 Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.

Original entry on oeis.org

1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2007

Keywords

Comments

The integral N(a;n) = Integral_{x=0..infinity} 1/(x^4 + 2*a*x^2 + 1)^(n+1) has a polynomial representation P_n(a) = 2^(n + 3/2) * (a+1)^(n + 1/2) * N(a;n) / Pi (known as the Boros-Moll polynomial). The table contains the coefficients T(n,l) of P_n(a) = 2^(-2*n)*Sum_{l=0..n} T(n,l)*a^l in row n and column l (with n >= 0 and 0 <= l <= n).

Examples

			The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
      1;
      6,     4;
     42,    60,     24;
    308,   688,    560,   160;
   2310,  7080,   8760,  5040,  1120;
  17556, 68712, 114576, 99456, 44352, 8064;
  ...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
		

Crossrefs

Cf. A002458 (row sums), A004982 (column l=0), A059304 (main diagonal), A067001 (rows reversed), A223549, A223550, A334907.

Programs

  • Maple
    A126936 := proc(m, l)
        add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
    end:
    seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
  • Mathematica
    t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)

Formula

From Petros Hadjicostas, May 25 2020: (Start)
T(n,l) = A067001(n, n-l) = 2^(2*n) * A223549(n,l)/A223550(n,l).
Sum_{l=0..n} T(n,l) = A002458(n) = A334907(n)*2^n/n!.
Bivariate o.g.f.: Sum_{n,l >= 0} T(n,l)*x^n*y^l = sqrt((1 + y)/(1 - 8*x*(1 + y))/(y + sqrt(1 - 8*x*(1 + y)))). (End)

Extensions

Corrected by Petros Hadjicostas, May 23 2020
Showing 1-5 of 5 results.