cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001790 Numerators in expansion of 1/sqrt(1-x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0

Views

Author

Keywords

Comments

Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023

Examples

			1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
		

References

  • P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.

Crossrefs

Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A001405.
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
    [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
    # From Peter Luschny, Aug 01 2009: (Start)
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
    a := n -> swing(2*n)/sigma(2*n); # (End)
    A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
  • Mathematica
    Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
    Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}]   (* John M. Campbell, Jul 04 2011 *)
    Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
    Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
    A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
    
  • PARI
    a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
    
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A001790 = lambda n: swing(2*n)/2^A000120(2*n)
    [A001790(n) for n in (0..25)]  # Peter Luschny, Nov 19 2012
    

Formula

a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024

A060818 a(n) = 2^(n - HammingWeight(n)) = 2^(n - BitCount(n)) = 2^(n - A000120(n)).

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, 1024, 1024, 2048, 2048, 32768, 32768, 65536, 65536, 262144, 262144, 524288, 524288, 4194304, 4194304, 8388608, 8388608, 33554432, 33554432, 67108864, 67108864, 2147483648, 2147483648, 4294967296
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001

Keywords

Comments

a(n) is the size of the Sylow 2-subgroup of the symmetric group S_n.
Also largest power of 2 which is a factor of n! and (apart from a(3)) the largest perfect power which is a factor of n!.
Denominator of e(n,n) (see Maple line).
Denominator of the coefficient of x^n in n-th Legendre polynomial; numerators are in A001790. - Benoit Cloitre, Nov 29 2002

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 16*x^7 + 128*x^8 + ...
e(n,n) sequence begins 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... .
		

Crossrefs

a(n) = A046161([n/2]).
Row sums of triangle A100258.

Programs

  • Magma
    [1] cat [Denominator(Catalan(n)/2^n): n in [0..50]]; // Vincenzo Librandi, Sep 01 2014
    (Python 3.10+)
    def A060818(n): return 1<Chai Wah Wu, Jul 11 2022
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m) * binomial(2*m-2*k,m-k) * binomial(m+k,m) * binomial(k,l), k=l..m); end;
    A060818 := proc(n) option remember; `if`(n=0,1,2^(padic[ordp](n,2))*A060818(n-1)) end: seq(A060818(i), i=0..34); # Peter Luschny, Nov 16 2012
    HammingWeight := n -> add(convert(n, base, 2)):
    seq(2^(n - HammingWeight(n)), n = 0..34); # Peter Luschny, Mar 23 2024
  • Mathematica
    Table[GCD[w!, 2^w], {w, 100}]
    (* Second program, more efficient *)
    Array[2^(# - DigitCount[#, 2, 1]) &, 35, 0] (* Michael De Vlieger, Mar 23 2024 *)
  • PARI
    {a(n) = denominator( polcoeff( pollegendre(n), n))};
    
  • PARI
    {a(n) = if( n<0, 0, 2^sum(k=1, n, n\2^k))};
    
  • PARI
    { for (n=0, 200, s=0; d=2; while (n>=d, s+=n\d; d*=2); write("b060818.txt", n, " ", 2^s); ) } \\ Harry J. Smith, Jul 12 2009
    
  • Sage
    def A060818(n):
        A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
        return 2^A005187(n//2)
    [A060818(i) for i in (0..34)]  # Peter Luschny, Nov 16 2012
    

Formula

a(n) = 2^(floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...).
a(n) = 2^(A011371(n)).
a(n) = gcd(n!, 2^n). - Labos Elemer, Apr 22 2003
a(n) = denominator(L(n)) with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n!, with the double factorial (2*n-1)!! = A001147(n), n>=0.
a(n) = Product_{i=1..n} A006519(i). - Tom Edgar, Apr 30 2014
a(n) = (n! XOR floor(n!/2)) XOR (n!-1 XOR floor((n!-1)/2)). - Gary Detlefs, Jun 13 2014
a(n) = denominator(Catalan(n-1)/2^(n-1)) for n>0. - Vincenzo Librandi, Sep 01 2014
a(2*n) = a(2*n+1) = 2^n*a(n). - Robert Israel, Sep 01 2014
a(n) = n!*A063079(n+1)/A334907(n). - Petros Hadjicostas, May 16 2020

Extensions

Additional comments from Henry Bottomley, May 01 2001
New name from Peter Luschny, Mar 23 2024

A334907 Comtet's expansion of the e.g.f. (sqrt(1 + sqrt(8*s)) - sqrt(1 - sqrt(8*s)))/ sqrt(8*s * (1 - 8*s)).

Original entry on oeis.org

1, 5, 63, 1287, 36465, 1322685, 58503375, 3053876175, 183771489825, 12525477859125, 953725671273375, 80237355387564375, 7391465178302430225, 739967791738943292525, 79993069900054731795375, 9286937373235386442953375, 1152424501315118408602850625
Offset: 0

Views

Author

Petros Hadjicostas, May 15 2020

Keywords

Comments

A special case of an integral in Comtet (1967, pp. 85-86) yields
Integral_{t=-oo..oo} dx/(x^2 + t^2)^(2*n) = Pi * a(n-1)/((n-1)! * 2^(3*n - 2) * t^(4*n-1)) for n >= 1 and t > 0. This integral also follows from a theorem in Moll (2002, p. 312, set a=1), but it requires the summation formula for a(n) shown below.

Crossrefs

Formula

a(n) = binomial(4*n+2, 2*n+1)*n!/2^(n+1).
a(n) = n!*A063079(n+1)/A060818(n) = n!*A001790(2*n+1)/A060818(n) (see the link for a proof).
a(n) = n!*Sum_{j=0..n} 2^(n-2*j)*binomial(2*n+1,2*j)*binomial(2*j,j).
a(n) = 2^n*n!*Sum_{k=0..n} A223549(n,k)/A223550(n,k).
E.g.f.: 2/(sqrt(1 - 8*s) * (sqrt(1 + sqrt(8*s)) + sqrt(1 - sqrt(8*s)))).
E.g.f.: sqrt(2/(1 + sqrt(1 - 8*s))/(1 - 8*s)).
D-finite with recurrence (2*n+1)*a(n) -(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, May 25 2020

A099976 Bisection of A000984.

Original entry on oeis.org

2, 20, 252, 3432, 48620, 705432, 10400600, 155117520, 2333606220, 35345263800, 538257874440, 8233430727600, 126410606437752, 1946939425648112, 30067266499541040, 465428353255261088, 7219428434016265740
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4*n+2, 2*n+1): n in [0..20]]; // Vincenzo Librandi, May 22 2011
  • Maple
    seq(binomial(4*n+2,2*n+1),n=0..20); # Emeric Deutsch, Dec 20 2004
  • Mathematica
    Array[Binomial[4*# + 2, 2*# + 1] &, 20, 0] (* Paolo Xausa, Jul 11 2024 *)

Formula

a(n) = binomial(4n+2, 2n+1). - Emeric Deutsch, Dec 20 2004
G.f.: 2*sqrt(2)/sqrt(1-16*x)/sqrt(1+sqrt(1-16*x)) = 2 + 60*x/(G(0)-30*x) where G(k)= 2*x*(4*k+3)*(4*k+5) + (2*k+3)*(k+1)- 2*x*(k+1)*(2*k+3)*(4*k+7)*(4*k+9)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 14 2012
G.f. A(x) satisfies A(x^2) = F'(x)/F(x), where F(x) = C(x)/C(-x) and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, May 15 2023
From R. J. Mathar, Jul 11 2024: (Start)
D-finite with recurrence n*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0.
a(n) = 2*A002458(n).
G.f.: 2* 2F1(3/4,5/4; 3/2 ; 16*x).
Conjecture: A000265(a(n)) = A063079(n+1), odd part of a(n). (End)
a(n) / (2*n+2) = A024492(n). - R. J. Mathar, Jul 12 2024

Extensions

More terms from Emeric Deutsch, Dec 20 2004
Showing 1-4 of 4 results.