cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A350954 Maximal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.

Original entry on oeis.org

1, 1, 3, 15, 100, 3091, 49375, 1479104, 43413488, 1539619328, 64563673460, 2877312739624, 252631974548628
Offset: 0

Views

Author

Stefano Spezia, Jan 27 2022

Keywords

Examples

			a(3) = 15:
    1    3    2
    3    1    3
    2    3    1
a(4) = 100:
    2    1    4    3
    1    2    1    4
    4    1    2    1
    3    4    1    2
a(5) = 3091:
    3    5    1    2    4
    5    3    5    1    2
    1    5    3    5    1
    2    1    5    3    5
    4    2    1    5    3
		

Crossrefs

Cf. A307887, A350931, A350953 (minimal), A356865 (minimal nonzero absolute value).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A350954(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 27 2022

Extensions

a(9) from Alois P. Heinz, Jan 27 2022
a(10)-a(12) from Lucas A. Brown, Sep 01 2022

A350938 Maximal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, 11, 296, 14502, 1153889, 134713213, 21788125930
Offset: 0

Views

Author

Stefano Spezia, Jan 26 2022

Keywords

Comments

Also maximal permanent of an n X n Hankel matrix using the integers 1 to 2*n - 1. - Stefano Spezia, Dec 22 2023

Examples

			a(2) = 11:
    3    1
    2    3
a(3) = 296:
    5    3    2
    4    5    3
    1    4    5
		

Crossrefs

Cf. A322908, A323254, A350931, A350937 (minimal).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A350938(n): return 1 if n == 0 else max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(range(1,2*n))) # Chai Wah Wu, Jan 27 2022

Extensions

a(5) from Alois P. Heinz, Jan 26 2022
a(6) from Lucas A. Brown, Sep 04 2022
a(7) from Giovanni Resta, Oct 13 2022

A350933 Maximal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 19, 1115, 86087, 9603283, 2307021183, 683793949387
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2022

Keywords

Comments

For n X n Hankel matrices the same maximal determinants appear.

Examples

			a(2) = 19:
    5    2
    3    5
a(3) = 1115:
   11    2    5
    7   11    2
    3    7   11
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[Table[Abs[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* Stefano Spezia, Feb 06 2024 *)
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = abs(matdet(matrix(n, n, i, j, prime(p[i+j-1])))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
  • Python
    from itertools import permutations
    from sympy import Matrix, prime
    def A350933(n): return max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,2*n))) # Chai Wah Wu, Jan 27 2022
    

Extensions

a(5) from Alois P. Heinz, Jan 25 2022
a(6)-a(7) from Lucas A. Brown, Aug 27 2022

A350930 Minimal determinant of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, -5, -42, -1810, -48098, -2737409, -114381074
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2022

Keywords

Examples

			a(2) = -5:
   [1    2]
   [3    1]
a(3) = -42:
   [3    4    1]
   [5    3    4]
   [2    5    3]
		

Crossrefs

Cf. A322908, A323254, A350931 (maximal).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A350930(n): return min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(range(1,2*n))) # Chai Wah Wu, Jan 27 2022

Extensions

a(5) from Alois P. Heinz, Jan 25 2022
a(6) from Pontus von Brömssen, Jan 26 2022
a(7) from Lucas A. Brown, Aug 28 2022

A351609 Maximal absolute value of the determinant of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.

Original entry on oeis.org

1, 1, 7, 152, 7113, 745285, 94974369
Offset: 0

Views

Author

Stefano Spezia, Feb 14 2022

Keywords

Comments

Upper bounds for the next terms can be found by considering all possibilities of choosing matrix entries on the diagonal and applying Gasper's determinant theorem (see references in A085000): a(7) <= 22475584128, a(8) <= 6634478203404, a(9) <= 2647044512044258. - Hugo Pfoertner, Feb 18 2022

Examples

			a(3) = 152:
   2    4    6
   4    5    1
   6    1    3
a(4) = 7113:
   2    6    8    9
   6    5   10    1
   8   10    3    4
   9    1    4    7
		

Crossrefs

Formula

a(n) = max(abs(A351147(n)), A351148(n)). - Hugo Pfoertner, Feb 16 2022

Extensions

a(5)-a(6) from Hugo Pfoertner, Feb 16 2022

A368351 a(n) is the minimal determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, -7, -105, -1810, -48098, -3051554, -175457984
Offset: 0

Views

Author

Stefano Spezia, Dec 22 2023

Keywords

Examples

			a(2) = -7:
  2, 3;
  3, 1.
a(3) = -105:
  2, 4, 5;
  4, 5, 1;
  5, 1, 3.
a(4) = -1810:
  4, 3, 7, 1;
  3, 7, 1, 2;
  7, 1, 2, 5;
  1, 2, 5, 6.
		

Crossrefs

Cf. A350931 (maximal absolute value), A368352 (maximal).
Cf. A350937 (minimal permanent), A350938 (maximal permanent).

Extensions

a(6)-a(7) from Lucas A. Brown, Aug 26 2024

A358568 a(n) is the maximal determinant of an n X n Toeplitz matrix using the integers 0 to 2*(n - 1).

Original entry on oeis.org

1, 0, 4, 74, 1781, 58180, 2579770, 152337045
Offset: 0

Views

Author

Stefano Spezia, Nov 22 2022

Keywords

Examples

			a(2) = 4:
    [2, 0;
     1, 2]
a(3) = 74:
    [4, 0, 2;
     3, 4, 0;
     1, 3, 4]
		

Crossrefs

Cf. A350931 (integers from 1 to 2*n - 1), A358567 (minimal), A358569 (minimal permanent), A358570 (maximal permanent).

Extensions

a(5)-a(7) from Lucas A. Brown, Dec 03 2022

A368352 a(n) is the maximal determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, 5, 42, 2294, 71753, 2737409, 114381074
Offset: 0

Views

Author

Stefano Spezia, Dec 22 2023

Keywords

Examples

			a(2) = 5:
  3, 1;
  1, 2.
a(3) = 42:
  2, 5, 3;
  5, 3, 4;
  3, 4, 1.
a(4) = 2294:
  2, 3, 6, 7;
  3, 6, 7, 1;
  6, 7, 1, 5;
  7, 1, 5, 4.
		

Crossrefs

Cf. A350931 (maximal absolute value), A368351 (minimal).
Cf. A350937 (minimal permanent), A350938 (maximal permanent).

Extensions

a(6)-a(7) from Lucas A. Brown, Aug 26 2024

A369942 a(n) is the number of distinct values of the determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, 3, 49, 1480, 50522, 2517213
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Range[2 n - 1]], i], n],{Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], list=List()); forperm(v, p, listput(list, matdet(matrix(n, n, i, j, p[i+j-1])));); #Set(list); \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import Matrix
    def A369942(n): return len({Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(range(1,n<<1))}) # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024
Showing 1-9 of 9 results.