A347015
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(1/3).
Original entry on oeis.org
1, 1, 5, 42, 498, 7644, 144156, 3225648, 83536008, 2457701928, 80970232104, 2953056534768, 118112744060208, 5140622709134496, 241863782829704928, 12232551538417012992, 661818290353375962240, 38140594162828447248000, 2332567001993176540206720, 150880256846462633823648000
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
a:= n-> add(abs(Stirling1(n, k))*g(k), k=0..n):
seq(a(n), n=0..19); # Alois P. Heinz, Aug 10 2021
-
nmax = 19; CoefficientList[Series[1/(1 + 3 Log[1 - x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}]
A365575
Expansion of e.g.f. 1 / (1 + 3 * log(1-x))^(2/3).
Original entry on oeis.org
1, 2, 12, 114, 1482, 24468, 490020, 11538840, 312363720, 9556741440, 326076452640, 12275391192480, 505400508041760, 22590511357965120, 1089423938332883520, 56379459359942190720, 3116574045158647605120, 183271869976364873222400
Offset: 0
-
a[n_] := Sum[Product[3*j + 2, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 3*j+2)*abs(stirling(n, k, 1)));
A320079
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 14, 76, 222, 488, 910, ...
0, 88, 772, 3132, 8824, 20080, ...
0, 694, 9808, 55242, 199456, 553870, ...
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A375946
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(4/3).
Original entry on oeis.org
1, 4, 32, 372, 5652, 105936, 2360712, 60956472, 1789413864, 58850914752, 2143354213728, 85629122177760, 3723269780412000, 175035687610956480, 8846458578801144000, 478330017277120767360, 27551501517174431852160, 1684176901225092936990720
Offset: 0
-
nmax=17; CoefficientList[Series[1 / (1 + 3 * Log[1-x])^(4/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k+1)*abs(stirling(n, k, 1)));
A354287
Expansion of e.g.f. 1/(1 - x)^(3/(1 + 3 * log(1-x))).
Original entry on oeis.org
1, 3, 30, 438, 8334, 194580, 5368662, 170591022, 6126386724, 245127214548, 10804866210648, 519910458588576, 27105081897342816, 1521393008601586536, 91445577404393807928, 5858664681621903625368, 398467273528657973600208, 28668189882264862351707504
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(3/(1+3*log(1-x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
A354750
Expansion of e.g.f. 1 / (1 - log(1 + 3*x) / 3).
Original entry on oeis.org
1, 1, -1, 6, -48, 534, -7542, 129240, -2603736, 60292512, -1577546928, 46021512096, -1480976147664, 52110720451152, -1990258155061776, 81995762243700864, -3624527727510038784, 171109526616468957312, -8591991935936929932672, 457246520477143117555968
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - Log[1 + 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! 3^(n - k), {k, 0, n}], {n, 0, 19}]
-
my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+3*x)/3))) \\ Michel Marcus, Jun 06 2022
A375951
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(5/3).
Original entry on oeis.org
1, 5, 45, 570, 9270, 183840, 4299360, 115795920, 3528915840, 120032889840, 4507313333040, 185185602462240, 8262852630732000, 397873645339668480, 20563762111640910720, 1135441077379757372160, 66703342626913255770240, 4154100873615633462894720
Offset: 0
-
nmax=17; CoefficientList[Series[1 / (1 + 3 * Log[1-x])^(5/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a008544(n) = prod(k=0, n-1, 3*k+2);
a(n) = sum(k=0, n, a008544(k+1)*abs(stirling(n, k, 1)))/2;
A375988
Expansion of e.g.f. (1 + 3 * log(1 - x))^(4/3).
Original entry on oeis.org
1, -4, 0, 12, 108, 1104, 14136, 225768, 4386168, 100885248, 2683789344, 81047258208, 2737919298528, 102266990392896, 4184016413001408, 186047367206499072, 8933002185371731200, 460580247564830138880, 25378595790818821816320, 1488230641037882346324480
Offset: 0
-
a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-4)*abs(stirling(n, k, 1)));
A375721
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^2.
Original entry on oeis.org
1, 6, 60, 822, 14238, 297684, 7286076, 204251328, 6450932448, 226613038608, 8763294140064, 369900822475728, 16922169163019088, 833991953707934496, 44050579327333028448, 2482381132145285334912, 148660444826262311114880, 9427874254540824544312320
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*log(1-x))^2))
-
a(n) = sum(k=0, n, 3^k*(k+1)!*abs(stirling(n, k, 1)));
A375722
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^3.
Original entry on oeis.org
1, 9, 117, 1962, 40122, 966276, 26755812, 836862192, 29167596504, 1120629465432, 47044646845848, 2142210019297680, 105154320625284240, 5534780654854980000, 310945503593770489440, 18570787974013838515200, 1174884522886771261079040
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*log(1-x))^3))
-
a(n) = sum(k=0, n, 3^k*(k+2)!*abs(stirling(n, k, 1)))/2;
Showing 1-10 of 11 results.