cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 4245 results. Next

A079124 Number of ways to partition n into distinct positive integers <= phi(n), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 4, 1, 5, 1, 11, 0, 17, 4, 13, 13, 37, 2, 53, 13, 51, 35, 103, 10, 135, 78, 167, 89, 255, 4, 339, 253, 378, 306, 542, 121, 759, 558, 872, 498, 1259, 121, 1609, 1180, 1677, 1665, 2589, 808, 3250, 1969, 3844, 3325, 5119, 1850, 6268, 4758, 7546, 7070
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 27 2002

Keywords

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).

Crossrefs

Programs

  • Haskell
    a079124 n = p [1 .. a000010 n] n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jul 05 2013
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n, phi(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 11 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[n, EulerPhi[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2015

A082061 Greatest common prime divisor of n and phi(n)=A000010(n); a(n)=1 if no common prime divisor exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 7, 5, 1, 2, 1, 3, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 5, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 7, 3, 5, 1, 2, 1, 2, 3
Offset: 1

Author

Labos Elemer, Apr 07 2003

Keywords

Programs

  • Maple
    gcpd := proc(a,b) local g ,d ; g := 1 ; for d in numtheory[divisors](a) intersect numtheory[divisors](b) do if isprime(d) then g := max(g,d) ; end if; end do: g ; end proc:
    A082061 := proc(n) gcpd( numtheory[phi](n), n) ; end proc: # R. J. Mathar, Jul 09 2011
  • Mathematica
    (* factors/exponent SET *) ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := x; f2[x_] := EulerPhi[x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, EulerPhi@ #} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    a(n)=gpf(gcd(eulerphi(n),n)) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = A006530(A009195(n)). - Antti Karttunen, Nov 03 2017
From Amiram Eldar, Dec 06 2024: (Start)
a(n) <= A006530(n), with equality if and only if n is in A070003.
a(n) = 1 if and only if n is a cyclic number (A003277). (End)

Extensions

Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022

A082065 Greatest common prime-divisor of phi(n)=A000010(n) and sigma(2,n) = A001157(n); a(n) = 1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 1, 2, 5, 2, 2, 2, 2, 2, 1, 2, 2, 5, 3, 5, 2, 2, 2, 1, 5, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 1
Offset: 1

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Maple
    gcpd := proc(a,b) local g ,d ; g := 1 ; for d in numtheory[divisors](a) intersect numtheory[divisors](b) do if isprime(d) then g := max(g,d) ; end if; end do: g ; end proc:
    A082065 := proc(n) gcpd( numtheory[phi](n), numtheory[sigma][2](n) ) ; end proc:
    seq(A082065(n),n=1..120) ; # R. J. Mathar, Jul 09 2011
  • Mathematica
    Table[FactorInteger[GCD[EulerPhi@ n, DivisorSigma[2, n]]][[-1, 1]], {n, 100}] (* Michael De Vlieger, Jul 22 2017 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    a(n)=gpf(gcd(eulerphi(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 21 2013

Extensions

Values corrected by R. J. Mathar, Jul 09 2011
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022

A082067 Smallest prime that divides n and phi(n)=A000010(n), or 1 if n and phi(n) are relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 7, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := n; f2[x_] := EulerPhi[x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, EulerPhi@ #} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A082067(n) = A020639(gcd(eulerphi(n), n)); \\ Antti Karttunen, Nov 03 2017

Formula

a(n) = A020639(A009195(n)). - Antti Karttunen, Nov 03 2017

Extensions

Name clarified by Antti Karttunen, Nov 03 2017

A098189 Sum of unitary divisors minus Euler phi: a(n) = A034448(n) - A000010(n).

Original entry on oeis.org

0, 2, 2, 3, 2, 10, 2, 5, 4, 14, 2, 16, 2, 18, 16, 9, 2, 24, 2, 22, 20, 26, 2, 28, 6, 30, 10, 28, 2, 64, 2, 17, 28, 38, 24, 38, 2, 42, 32, 38, 2, 84, 2, 40, 36, 50, 2, 52, 8, 58, 40, 46, 2, 66, 32, 48, 44, 62, 2, 104, 2, 66, 44, 33, 36, 124, 2, 58, 52, 120, 2, 66, 2, 78, 64, 64, 36, 144, 2
Offset: 1

Author

Labos Elemer, Sep 03 2004

Keywords

Examples

			a(1) = 1 - 1 = 0.
		

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@ n, {n, 120}] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - eulerphi(n); \\ Michel Marcus, Feb 25 2014
    
  • PARI
    a(n)=my(f=factor(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1) - eulerphi(f) \\ Charles R Greathouse IV, Mar 01 2017

Formula

a(n) > A063919(n) if n > 1.
a(A000040(k)) = 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) - 3/Pi^2 = 0.380252... . - Amiram Eldar, Aug 21 2023

Extensions

Edited by R. J. Mathar, Mar 02 2009

A110086 Numbers k such that sigma(k) - phi(k) <= tau(k)^omega(k), where sigma = A000203, phi = A000010, tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 15, 17, 18, 19, 20, 23, 24, 29, 30, 31, 36, 37, 41, 42, 43, 47, 53, 59, 60, 61, 66, 67, 70, 71, 73, 78, 79, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 126, 127, 130, 131, 132, 137, 138, 139, 140, 149, 150, 151
Offset: 1

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Crossrefs

Union of A000040 and A110085.
Complement of A110086.

Programs

  • Haskell
    a110086 n = a110086_list !! (n-1)
    a110086_list = filter (\x -> a051612 x <= a110088 x) [1..]
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    q[k_] := DivisorSigma[1, k] - EulerPhi[k] <= DivisorSigma[0, k]^PrimeNu[k]; Select[Range[160], q] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(n)=sigma(n)-eulerphi(n)<=numdiv(n)^omega(n) \\ Charles R Greathouse IV, Feb 14 2013
    

Formula

A051612(a(n)) <= A110088(a(n)).

A147619 Numbers n = concat(a,b) such that phi(n) = phi(a) * phi(b), where phi = A000010.

Original entry on oeis.org

78, 780, 897, 918, 1179, 1365, 1776, 2574, 2598, 2967, 3168, 3762, 4758, 5775, 5796, 7800, 7875, 7917, 8217, 8970, 9180, 9576, 11790, 13650, 13662, 13875, 13896, 14391, 17760, 18564, 18858, 19812, 20097, 25740, 25935, 25974, 25980, 27573, 28776
Offset: 1

Author

M. F. Hasler, Nov 08 2008

Keywords

Comments

Concat(a,b) means decimal concatenation of a and b, i.e., a*10^floor(log_10(b)+1) + b, since we do not allow leading zeros in b. However, allowing for leading zeros in b would not give any additional term below 10^6.
This sequence was suggested by Farideh Firoozbakht and David Wilson on the SeqFan mailing list, Oct 27 and Nov 06 2008 (see Links).
Farideh Firoozbakht has proved that if n is in this sequence, then n*10 is again in the sequence. Thus one could call "primitive" terms of this sequence those which aren't multiples of 10.
A possible variant would be to allow decomposition of n into an arbitrary number of substrings. If one requires decomposition of n into each of its digits, i.e., the analog of A098771 with sigma replaced by phi, then 78 appears to be the only number having this property.

Crossrefs

Cf. A000010, A147616 (analog for sigma), A147624 (analog for omega), A147627 (analog for bigomega).

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n; for n from 1 to q do
    for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k);
    if s*t>0 then if phi(s)*phi(t)=phi(n)
    then print(n); break; fi; fi; od; od; end: P(10^5); # Paolo P. Lava, Jan 27 2015
  • PARI
    is_A147619(n)={ local(p=1, s=eulerphi(n)); while( n>p*=10, n%p*10

A156834 A156348 * A000010.

Original entry on oeis.org

1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, 63, 13, 56, 99, 89, 17, 154, 19, 269, 237, 132, 23, 509, 301, 182, 379, 783, 29, 1230, 31, 881, 813, 306, 2125, 2431, 37, 380, 1299, 4157, 41, 4822, 43, 3695, 6175, 552, 47, 8529, 5587, 6266, 2787
Offset: 1

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime. Companion to A156833.

Examples

			a(4) = 5 = (1, 2, 0, 1) dot (1, 1, 2, 2) = (1 + 2 + 0 + 2), where row 4 of A156348 = (1, 2, 0, 1) and (1, 1, 2, 2) = the first 4 terms of Euler's phi function.
		

Crossrefs

Equals row sums of triangle A157030. [Gary W. Adamson, Feb 21 2009]

Programs

  • Maple
    A156834 := proc(n)
            add(A156348(n,k)*numtheory[phi](k),k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 2, #-1] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-2, d-1)); \\ Seiichi Manyama, Apr 22 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*(x/(1-x^k))^k)) \\ Seiichi Manyama, Apr 22 2021

Formula

Equals A156348 * A054525 * [1, 2, 3,...]; where A054525 = the inverse Mobius transform.
a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-2, d-1). - Seiichi Manyama, Apr 22 2021
G.f.: Sum_{k >= 1} phi(k) * (x/(1 - x^k))^k. - Seiichi Manyama, Apr 22 2021

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

A179189 Numbers n such that phi(n) = phi(n+7), with Euler's totient function phi = A000010.

Original entry on oeis.org

5, 7, 21, 45, 75, 105, 285, 488, 585, 765, 1148, 1275, 1358, 1785, 2528, 3465, 4088, 6825, 9405, 12375, 14348, 15345, 16208, 16988, 23648, 25905, 25935, 42698, 50018, 52845, 54615, 61448, 62865, 68445, 78195, 80025, 82005, 88328, 93555, 98475
Offset: 1

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

There are 40 terms below 10^5, 81 terms below 10^6 and 162 terms below 10^7. There are 6606 terms below 10^12. [Jud McCranie, Feb 13 2012]
Farideh Firoozbakht asks whether there is some a(n+1) = a(n)+7, cf. link.
For n < 10^13, the only n such that phi(n-7) = phi(n) = phi(n+7) is 30057431145. - Giovanni Resta, Feb 27 2014

Programs

  • Magma
    [n: n in [1..100000] | EulerPhi(n) eq EulerPhi(n+7)]; // Vincenzo Librandi, Sep 08 2016
  • Mathematica
    Select[Range[100000], EulerPhi[#] == EulerPhi[# + 7] &] (* Vincenzo Librandi, Sep 08 2016 *)
  • PARI
    {op=vector(N=7); for( n=1, 1e5, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
    

Formula

A000010(a(n)) = A000010(a(n)+7).

A179202 Numbers n such that phi(n) = phi(n+8), with Euler's totient function phi=A000010.

Original entry on oeis.org

13, 16, 19, 25, 28, 32, 40, 70, 104, 128, 175, 182, 209, 280, 296, 488, 551, 584, 657, 715, 806, 910, 1232, 1256, 1544, 1602, 2022, 2048, 2216, 2288, 2504, 2540, 2590, 2717, 2912, 3176, 3368, 3640, 3656, 4060, 4328, 4904, 5246, 5288, 5320, 5384, 5864, 5969
Offset: 1

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

Among the 5596 terms below 10^7, a(6)=32 is the only term such that a(n+1) = a(n)+8.
There are 141741552 terms under 10^12. - Jud McCranie, Feb 13 2012
If a(n) is even then a(n)/2 is in A179186 - see comment at A217139. - Jud McCranie, Dec 31 2012

Programs

  • Magma
    [n: n in [1..10000] | EulerPhi(n) eq EulerPhi(n+8)]; // Vincenzo Librandi, Sep 08 2016
  • Mathematica
    Select[Range[6000], EulerPhi[#] == EulerPhi[# + 8] &] (* Vincenzo Librandi, Sep 08 2016 *)
  • PARI
    {op=vector(N=8); for( n=1, 1e4, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
    

Formula

A000010(a(n)) = A000010(a(n)+8).
Previous Showing 101-110 of 4245 results. Next