cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 4245 results. Next

A175667 Smallest number m such that phi(m) = n*tau(m), with phi=A000010 and tau=A000005; a(n)=0 if no such m exists.

Original entry on oeis.org

1, 5, 7, 34, 11, 13, 58, 17, 19, 55, 23, 65, 106, 29, 31, 85, 0, 37, 0, 41, 43, 115, 47, 119, 125, 53, 133, 145, 59, 61, 0, 388, 67, 274, 71, 73, 298, 0, 79, 187, 83, 203, 346, 89, 209, 235, 0, 97, 394, 101, 103, 169, 107, 109, 253, 113, 458, 295, 0, 287, 0, 0, 127, 514, 131
Offset: 1

Views

Author

Enrique Pérez Herrero, Aug 05 2010

Keywords

Comments

If p = 2*n+1 is a prime, and if n > 1 then a(n)=p.
From R. J. Mathar, Aug 07 2010: (Start)
First column in the array
1,3,8,10,18,24,30: A020488
5,9,15,28,40,72,84,90,120: A062516
7,21,26,56,70,78,108,126,168,210: A063469
34,45,52,102,140,156,252,360,420: A063470
11,33,88,110,198,264,330,
13,35,39,63,76,104,105,130,228,234,280,312,390,504,540,630,840,
58,98,174,294,
17,51,128,136,170,176,224,260,306,384,408,468,510,528,672,780,1260,
19,57,74,135,152,182,190,222,342,456,546,570,756,1080,
55,82,99,124,165,246,308,350,372,440,792,924,990,1050,1320,
23,69,184,230,414,552,690,
65,117,148,195,238,315,364,380,444,520,684,714,864,936,1092,1140,1170,1560,2520,
... (End)

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[10^5], EulerPhi@ # == n DivisorSigma[0, #] &] /.
    k_ /; MissingQ@ k -> 0, {n, 120}] (* Michael De Vlieger, Aug 09 2017, Version 10.2 *)

Formula

From Enrique Pérez Herrero, Jan 01 2012: (Start)
If n > 1 then a(n) >= 2*n+1 or a(n)=0.
If p and q = 2*p+1 are both prime, A005384, then a(p) = 2*p+1.
If p > 3 and q = 4*p+1 are both prime, A023212, then a(p) = 8*p + 2 = 2*q.
If p > 2 is prime and both 2*p+1 and 4*p+1 are composite, A043297, then a(n)=0.
(End)

Extensions

More terms from R. J. Mathar, Aug 07 2010
Comment corrected by Enrique Pérez Herrero, Aug 12 2010

A229324 Composite squarefree numbers n such that p + tau(n) divides n - phi(n), where p are the prime factors of n, tau(n) = A000005(n) and phi(n) = A000010(n).

Original entry on oeis.org

115, 205, 295, 565, 655, 745, 835, 1195, 1285, 1465, 1555, 1735, 1915, 2005, 2095, 2455, 2545, 2815, 2995, 3085, 3265, 3715, 3805, 3985, 4435, 4705, 4885, 5065, 5155, 5245, 5515, 5965, 6145, 6415, 6505, 6595, 6865, 7045, 7135, 7405, 7495, 7765, 7855, 8035
Offset: 1

Views

Author

Paolo P. Lava, Sep 20 2013

Keywords

Comments

All terms are apparently multiple of 5.
It appears that a(n) = 5*A061240(n+1). - Michel Marcus, Sep 21 2013

Examples

			Prime factors of 2815 are 5, 563 and tau(2815) = 4, phi(2815) = 2248. 2815 - 2248 = 567 and  567 / (5 + 4) = 63, 567 / (563 + 4) = 1.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) global a, b, c, i, ok, p, n;
    for n from 2 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n-phi(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(6*10^9);

Extensions

Deleted first term, changed b-file and comment by Paolo P. Lava, Sep 23 2013

A233867 a(n) = |{0 < m < 2*n: m is a square with 2*n - 1 - phi(m) prime}|, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 3, 2, 1, 3, 3, 1, 4, 2, 1, 6, 2, 3, 4, 1, 3, 4, 2, 3, 3, 3, 2, 6, 3, 1, 6, 3, 3, 6, 2, 2, 6, 2, 4, 2, 3, 4, 5, 3, 3, 6, 4, 5, 7, 2, 3, 7, 3, 3, 3, 5, 1, 6, 2, 3, 6, 4, 5, 5, 4, 4, 7, 3, 4, 6, 4, 3, 5, 2, 2, 8, 5, 3, 5, 3, 6, 6, 4, 5, 5, 4, 4, 7, 2, 5, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 17 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) For any odd number 2*n - 1 > 4, there is a positive integer k < 2*n such that 2*n - 1 - phi(k) and 2*n - 1 + phi(k) are both prime.
By Goldbach's conjecture, 2*n > 2 could be written as p + q with p and q both prime, and hence 2*n - 1 = p + (q - 1) = p + phi(q).
By induction, phi(k^2) (k = 1,2,3,...) are pairwise distinct.

Examples

			a(29) = 1 since 2*29 - 1 = 37 + phi(5^2) with 37 prime.
a(39) = 1 since 2*39 - 1 = 71 + phi(3^2) with 71 prime.
a(66) = 1 since 2*66 - 1 = 89 + phi(7^2) with 89 prime.
a(128) = 1 since 2*128 - 1 = 223 + phi(8^2) with 223 prime.
a(182) = 1 since 2*182 - 1 = 331 + phi(8^2) with 331 prime.
a(413) = 1 since 2*413 - 1 = 823 + phi(2^2) with 823 prime.
a(171) = 3 since 2*171 - 1 = 233 + phi(18^2) = 257 + phi(14^2) = 293 + phi(12^2) with 233, 257, 293 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2n-1-EulerPhi[k^2]],1,0],{k,1,Sqrt[2n-1]}]
    Table[a[n],{n,1,100}]

A296078 Least number with the same prime signature as 1+phi(n), where phi = A000010, Euler totient function.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 6, 6, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 6, 4, 6, 2, 6, 12, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 6, 6, 2, 2, 4, 6, 2, 6, 2, 2, 4, 2, 12, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A039698 (positions of 2's).

Programs

  • Mathematica
    f[n_] := Block[{ps = Last@# & /@ FactorInteger[1 + EulerPhi@n]}, Times @@ ((Prime@ Range@ Length@ ps)^ps)]; Array[f, 105] (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));

Formula

a(n) = A046523(A039649(n)) = A046523(1+A000010(n)).

A318917 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 2, 8, 38, 262, 1732, 16144, 153596, 1660796, 19415384, 264084064, 3664187848, 57366995272, 936097392752, 16131362629568, 302946516251408, 6034409270818576, 125044362929875744, 2756094464546395264, 63280996793936902496
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[EulerPhi[k]* a[n-k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

a(n)/n! ~ 3^(1/4) * exp(2*sqrt(6*n)/Pi) / (Pi * 2^(3/4) * n^(3/4)).
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} mu(gcd(k,j)). - Ilya Gutkovskiy, Aug 17 2021
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 29 2022
E.g.f.: exp( Sum_{n>=1} (mu(n)/n) * x^n/(1 - x^n) ), where mu(n) = A008683(n). - Paul D. Hanna, Jun 24 2023

A319087 a(n) = Sum_{k=1..n} k^2*phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 5, 23, 55, 155, 227, 521, 777, 1263, 1663, 2873, 3449, 5477, 6653, 8453, 10501, 15125, 17069, 23567, 26767, 32059, 36899, 48537, 53145, 65645, 73757, 86879, 96287, 119835, 127035, 155865, 172249, 194029, 212525, 241925, 257477, 306761, 332753, 369257
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Comments

Comment from N. J. A. Sloane, Mar 22 2020: (Start)
Theorem: Sum_{ 1<=i<=n, 1<=j<=n, gcd(i,j)=1 } i*j = a(n).
Proof: From the Apostol reference we know that:
Sum_{ 1<=i<=n, gcd(i,n)=1 } i = n*phi(n)/2 (see A023896).
We use induction on n. The result is true for n=1.
Then a(n) - a(n-1) = 2*Sum_{ i=1..n-1, gcd(i,n)=1 } n*i = n^2*phi(n). QED (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*EulerPhi[k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*eulerphi(k)); \\ Michel Marcus, Sep 12 2018

Formula

a(n) ~ 3*n^4 / (2*Pi^2).

A323333 The Euler phi function values of the powerful numbers, A000010(A001694(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 20, 18, 16, 12, 42, 32, 24, 54, 40, 36, 110, 100, 64, 48, 156, 84, 80, 72, 120, 162, 128, 96, 272, 108, 294, 342, 168, 160, 144, 252, 220, 200, 256, 506, 192, 500, 216, 360, 312, 486, 336, 320, 812, 288, 240, 930, 440, 324, 400, 512, 660, 600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Murata's constant Product_{p prime}(1 + 1/(p-1)^2) (A065485).
Sequence is injective: no value occurs more than once. - Amiram Eldar and Antti Karttunen, Sep 30 2019

Crossrefs

Cf. A000010, A001694, A002618 (a subsequence), A065485, A082695, A112526, A323332.

Programs

  • Mathematica
    EulerPhi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after Harvey P. Dale at A001694 *)
  • PARI
    lista(nn) = apply(x->eulerphi(x), select(x->ispowerful(x), vector(nn, k, k))); \\ Michel Marcus, Jan 11 2019

A366669 a(n) = phi(10^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 10, 100, 720, 9792, 90900, 990000, 9090900, 94117632, 681410880, 9897840000, 86925373920, 979102080000, 9080325951840, 95255567232000, 712493107200000, 9926748531589120, 90004044661864320, 989999010000000000, 9090909090909090900, 97910150554895155200
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[10^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 10 2023 *)
  • PARI
    {a(n) = eulerphi(10^n+1)}

Formula

a(n) = A000010(A062397(n)). - Paul F. Marrero Romero, Nov 10 2023

A055008 Numbers k such that gcd(phi(k), sigma(k)) = 1 with phi = A000010, sigma = A000203.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 32, 36, 50, 64, 81, 100, 121, 128, 144, 225, 242, 256, 289, 324, 400, 484, 512, 529, 576, 578, 625, 729, 800, 841, 900, 1024, 1058, 1089, 1156, 1250, 1296, 1600, 1681, 1682, 1936, 2025, 2048, 2116, 2209, 2304, 2312, 2401, 2500, 2601
Offset: 1

Views

Author

Labos Elemer, May 31 2000

Keywords

Comments

The asymptotic density of this sequence is 0 (Dressler, 1974). - Amiram Eldar, Jul 23 2020
Conjecture: Every term is a square or twice a square. - Jason Yuen, May 16 2024
The conjecture is true: If k is neither a square nor twice a square (i.e., in A028983), then sigma(k) is even. Since gcd(phi(k), sigma(k)) = 1, then phi(k) must be odd, but phi(k) is odd only for k = 1 and 2. - Amiram Eldar, May 19 2024

Examples

			For n = 484, phi(484) = 220 = 2*2*5*11, sigma(484) = 931 = 7*7*19, and gcd(220,931) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2700, CoprimeQ[EulerPhi@ #, DivisorSigma[1, #]] &] (* Michael De Vlieger, Feb 05 2017 *)
    Select[With[{max = 51}, Union[Array[#^2 &, max], Array[2*#^2 &, Floor[max / Sqrt[2]]]]], CoprimeQ[EulerPhi[#], DivisorSigma[1, #]] &] (* Amiram Eldar, May 19 2024 *)
  • PARI
    is(n)=gcd(sigma(n),eulerphi(n))==1 \\ Charles R Greathouse IV, Feb 19 2013

Extensions

Incorrect comment removed by Charles R Greathouse IV, Feb 19 2013

A065093 Convolution of A000010 with itself.

Original entry on oeis.org

1, 2, 5, 8, 16, 20, 36, 44, 68, 76, 120, 124, 188, 196, 276, 272, 404, 380, 544, 532, 716, 668, 968, 860, 1184, 1120, 1472, 1332, 1896, 1624, 2204, 2036, 2656, 2352, 3284, 2752, 3684, 3356, 4324, 3744, 5192, 4312, 5720, 5180, 6540, 5628, 7768, 6388, 8476
Offset: 1

Views

Author

Vladeta Jovovic, Nov 11 2001

Keywords

Crossrefs

Column k=2 of A340995.

Programs

  • Mathematica
    Table[Sum[EulerPhi[j]*EulerPhi[n-j], {j, 1, n-1}], {n, 2, 50}] (* Vaclav Kotesovec, Aug 18 2021 *)
  • PARI
    { for (n=1, 1000, a=sum(k=1, n, eulerphi(k)*eulerphi(n+1-k)); write("b065093.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009

Formula

a(n) = Sum_{k=1..n} phi(k)*phi(n+1-k), where phi is Euler totient function (A000010).
G.f.: (1/x)*(Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2)^2. - Ilya Gutkovskiy, Jan 31 2017
a(n) ~ (n^3/6) * c * Product_{primes p|n+1} ((p^3-2*p+1)/(p*(p^2-2))), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474) (Ingham, 1927). - Amiram Eldar, Jul 13 2024
Previous Showing 91-100 of 4245 results. Next