cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 2635 results. Next

A152201 Triangle read by rows, A000012 * A152198.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 5, 4, 1, 6, 6, 2, 7, 9, 5, 1, 8, 12, 8, 2, 9, 16, 14, 6, 1, 10, 20, 20, 10, 2, 11, 25, 30, 20, 7, 1, 12, 30, 40, 30, 12, 2, 13, 36, 55, 50, 27, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 29 2008

Keywords

Comments

Row sums = A027383: (1, 2, 4, 6, 10, 14, 22, 30,...).

Examples

			First few rows of the triangle =
1;
2;
3, 1;
4, 2;
5, 4, 1;
6, 6, 2;
7, 9, 5, 1;
8, 12, 8, 2;
9, 16, 14, 6, 1;
10, 10, 20, 20, 2;
11, 25, 30, 20, 7, 1;
12, 30, 40, 30, 12, 2;
13, 36, 55, 50, 27, 8, 1;
...
		

Crossrefs

Formula

A000012 * A152198 = partial sums of A152198 column terms.

A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 3, 3, 2, 1, 3, 3, 3, 3, 2, 1, 4, 4, 4, 4, 3, 2, 1, 4, 4, 4, 4, 4, 3, 2, 1, 5, 5, 5, 5, 5, 4, 3, 2, 1, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 21 2009

Keywords

Comments

Row sums = A001318, general pentagonal numbers: (1, 2, 5, 12, 15, 22, ...).
Eigensequence of the triangle = A168259: (1, 2, 6, 14, 38, 96, 254, 656, ...).
The operation A101688 * A000012 transforms rows of A101688 into sequence terms by taking partial sums from the right of A101688 rows. For example, row 3 of A101688 (0, 0, 1, 1) becomes (2, 2, 2, 1). - Gary W. Adamson, Nov 15 2022

Examples

			First few rows of the triangle:
  1;
  1, 1;
  2, 2, 1;
  2, 2, 2, 1;
  3, 3, 3, 2, 1;
  3, 3, 3, 3, 2, 1;
  4, 4, 4, 4, 3, 2, 1;
  4, 4, 4, 4, 4, 3, 2, 1;
  5, 5, 5, 5, 5, 4, 3, 2, 1;
  5, 5, 5, 5, 5, 5, 4, 3, 2, 1;
  6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
  6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
  7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
  7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
  8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688
    lista(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); my(m=ma*mb, list=List()); for (n=1, nn, listput(list, vector(n, k, m[n,k]))); Vec(list); \\ Michel Marcus, Nov 16 2022

Formula

Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
a(n) = min(A004736, A204164); a(n) = min(j, floor((t+2)/2)), where j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 18 2013

Extensions

Name corrected by Gary W. Adamson, Nov 15 2022

A191750 Dirichlet convolution of A000012 with A007947.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 7, 7, 18, 12, 20, 14, 24, 24, 9, 18, 21, 20, 30, 32, 36, 24, 28, 11, 42, 10, 40, 30, 72, 32, 11, 48, 54, 48, 35, 38, 60, 56, 42, 42, 96, 44, 60, 42, 72, 48, 36, 15, 33, 72, 70, 54, 30, 72, 56, 80, 90, 60, 120, 62, 96, 56, 13, 84, 144, 68, 90, 96, 144, 72
Offset: 1

Views

Author

Enrique Pérez Herrero, Jun 22 2011

Keywords

Comments

The squarefree kernel of n is sometimes called rad(n).
Sequence is multiplicative with a(p^e) = 1 + p*e.
Dirichlet convolution of A000005 with the function of absolute values of A097945. - R. J. Mathar, Jul 12 2011
Dirichlet convolution of phi(n)*mu(n)^2 with tau(n). - Richard L. Ollerton, May 07 2021

Examples

			The divisors of 12 are 1,2,3,4,6 and 12, the squarefree kernels of these numbers are 1,2,3,2,6 and 6, so a(12) = 1+2+3+2+6+6 = 20.
		

Crossrefs

Cf. A007947, A000012 (all 1's sequence), A005117, A073355.

Programs

  • Magma
    A007947:=func< n | &*PrimeDivisors(n) >; A191750:=func< n | &+[ A007947(d): d in Divisors(n) ] >; [ A191750(n): n in [1..80] ]; // Klaus Brockhaus, Jun 27 2011
  • Maple
    with(numtheory): A191750 := n -> add(ilcm(op(factorset(k))),k=divisors(n)):
    seq(A191750(i), i=1..80); # Peter Luschny, Jun 23 2011
  • Mathematica
    rad[n_]:=Times@@(FactorInteger[n][[All,1]]); A191750[n_]:=Plus@@rad/@Divisors[n]; Array[A191750,50]
    a[1] = 1; a[n_] := Times @@ ((1 + First[#] * Last[#])& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    rad(n)=local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]);
    A191750(n)=sumdiv(n, d, rad(d))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 19 2020
    

Formula

a(n) = Sum_{d|n} rad(d) = Sum_{d|n} A007947(d).
a(n) <= sigma_1(n) = A000203(n); equality holds if n is a squarefree number (A005117).
Dirichlet g.f.: zeta^2(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jul 12 2011
G.f.: Sum_{k>=1} rad(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n} mu(d)^2*phi(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
From Vaclav Kotesovec, Jun 19 2020: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.70444220099916559... (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*tau(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A230849 A075526 and A000012 interleaved.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 4, 1, 6, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 6, 1, 4, 1, 6, 1, 8, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 14, 1, 4, 1, 6, 1, 2, 1, 10, 1, 2, 1, 6, 1, 6, 1, 4, 1, 6, 1, 6, 1, 2, 1, 10, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2013

Keywords

Comments

a(n) is also the length of the n-th edge of a staircase which represents the function pi(x) on the first quadrant of the square grid, see A000720.
a(2n-1) is the length of the n-th horizontal edge in the staircase.
a(2n) is the length of the n-th vertical edge in the staircase.
For another version see A230850.

Examples

			Illustration of initial terms, n = 1..22:
.
1                                                            _ _|
1                                                _ _ _ _ _ _|
1                                        _ _ _ _|
1                                    _ _|
1                            _ _ _ _|
1                        _ _|
1                _ _ _ _|
1            _ _|
1        _ _|
1      _|
1    _|
.
.    1 1   2   2       4   2       4   2       4           6   2
.
Drawing vertical line segments below the staircase (as shown below) we have that the number of cells in the vertical bars gives A000720.
Drawing horizontal line segments above the staircase we have that the number of cells in the k-th horizontal bar is A006093(k).
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
30  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
22  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
18  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
16  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
12  |_ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
10  |_ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
6   |_ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
4   |_ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
2   |_ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
1   |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
.    0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
		

Crossrefs

Programs

  • Mathematica
    Riffle[Join[{1},Differences[Prime[Range[100]]]],1] (* Paolo Xausa, Oct 31 2023 *)
  • PARI
    A230849(n) = if((n%2)&&(n>1),prime((n+1)/2)-prime(((n+1)/2)-1),1); \\ Antti Karttunen, Dec 23 2018

A104726 Triangle generated as the matrix product of A026729 and A000012 (triangular views), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 5, 5, 5, 4, 1, 8, 8, 8, 8, 5, 1, 13, 13, 13, 13, 12, 6, 1, 21, 21, 21, 21, 21, 17, 7, 1, 34, 34, 34, 34, 34, 33, 23, 8, 1, 55, 55, 55, 55, 55, 55, 50, 30, 9, 1, 89, 89, 89, 89, 89, 89, 88, 73, 38
Offset: 0

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Comments

If the triangular factors A026729 and A000012 are commuted in the product, A004070 results.
Riordan array (1/(1-x-x^2), x*(1+x)). - Philippe Deléham, Mar 06 2013

Examples

			First few rows of the triangle are
1;
1, 1;
2, 2, 1;
3, 3, 3, 1;
5, 5, 5, 4, 1;
8, 8, 8, 8, 5, 1;
13, 13, 13, 13, 12, 6, 1;
21, 21, 21, 21, 21, 17, 7, 1;
...
Production array begins
1, 1
1, 1, 1
-1, -1, 1, 1
2, 2, -1, 1, 1
-5, -5, 2, -1, 1, 1
14, 14, -5, 2, -1, 1, 1
-42, -42, 14, -5, 2, -1, 1, 1
132, 132, -42, 14, -5, 2, -1, 1, 1
-429, -429, 132, -42, 14, -5, 2, -1, 1, 1
... which is based on A000108 or A168491. - _Philippe Deléham_, Mar 06 2013
		

Crossrefs

Cf. A001629 (row sums), A026729, A004070, A000071.

Programs

  • Maple
    A104726 := proc(n,k)
            add( binomial(j,n-j),j=k..n) ;
    end proc:
    seq(seq(A104726(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Oct 30 2011

Formula

T(n,k) = sum_{j=k..n} binomial(j,n-j). - R. J. Mathar, Oct 30 2011
T(n,0) = T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + T(n-2,k-1) for k>0. - Philippe Deléham, Mar 06 2013
T(2*n,n) = A000045(2n+1) = A001519(n+1) = A122367(n). - Philippe Deléham, Mar 06 2013

A128316 Triangle read by rows: A000012 * A128315 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, -1, 1, 2, 3, -2, 1, 4, -1, 4, -3, 1, 4, 3, -5, 7, -4, 1, 6, -3, 10, -13, 11, -5, 1, 4, 8, -14, 23, -24, 16, -6, 1, 7, -2, 15, -33, 46, -40, 22, -7, 1, 7, 4, -15, 47, -79, 86, -62, 29, -8, 1, 9, -6, 30, -73, 131, -166, 148, -91, 37, -9, 1, 7, 12, -37, 103, -204, 297, -314, 239, -128, 46, -10, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Comments

A128316 * [1,2,3...] = A000034: [1,2,1,2,...].

Examples

			First few rows of the triangle:
  1;
  1,  1;
  3, -1,   1;
  2,  3   -2,   1;
  4, -1,   4,  -3,   1;
  4,  3,  -5,   7,  -4,  1;
  6, -3,  10, -13,  11, -5,  1;
  4,  8, -14,  23, -24, 16, -6, 1;
  ...
		

Crossrefs

Sums include: A000027 (row), A032766, A047215, A344817 (alternating sign).

Programs

  • Magma
    A128316:= func< n,k | (&+[(-1)^(j+k)*Floor(n/j)*Binomial(j-1,k-1): j in [k..n]]) >;
    [A128316(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 23 2024
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(j+k)*Floor[n/j]*Binomial[j-1,k-1], {j,k,n}];
    Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 23 2024 *)
  • SageMath
    def A128316(n,k): return sum((-1)^(j+k)*int(n//j)*binomial(j-1,k-1) for j in range(k,n+1))
    flatten([[A128316(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 23 2024

Formula

Sum_{k=1..n} T(n, k) = A000027(n) (row sums).
T(n, 1) = A059851(n).
From G. C. Greubel, Jun 23 2024: (Start)
T(n, k) = A010766(n,k) * AA130595(n-1, k-1) as infinite lower triangular matrices.
T(n, k) = Sum_{j=k..n} (-1)^(j+k) * floor(n/j) * binomial(j-1, k-1).
T(2*n-1, n) = (-1)^(n-1)*A026641(n).
T(2*n-2, n-1) = (-1)^n*A014300(n-1), for n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A344817(n).
Sum_{k=1..n} k*T(n, k) = A032766(n-1).
Sum_{k=1..n} (k+1)*T(n, k) = A047215(n). (End)

Extensions

a(28) = 1 inserted and more terms from Georg Fischer, Jun 06 2023

A128489 Triangle read by rows: A000012 * A126988 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 6, 1, 1, 10, 3, 1, 1, 15, 3, 1, 1, 1, 21, 6, 3, 1, 1, 1, 28, 6, 3, 1, 1, 1, 1, 36, 10, 3, 3, 1, 1, 1, 1, 45, 10, 6, 3, 1, 1, 1, 1, 1, 55, 15, 6, 3, 3, 1, 1, 1, 1, 1, 66, 15, 6, 3, 3, 1, 1, 1, 1, 1, 1, 78, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 91, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 04 2007

Keywords

Comments

Row sums = A024916: (1, 4, 8, 15, 21, 33, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   6,  1, 1;
  10,  3, 1, 1;
  15,  3, 1, 1, 1;
  21,  6, 3, 1, 1, 1;
  28,  6, 3, 1, 1, 1, 1;
  36, 10, 3, 3, 1, 1, 1, 1;
  45, 10, 6, 3, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Formula

By columns, k=1,2,3,...; k repeated terms of the triangular series, (1, 3, 6, 10, ...) in the k-th column.

Extensions

a(11) = 1 inserted and more terms from Georg Fischer, May 29 2023

A130127 Triangle defined by A000012 * A130125, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 4, 8, 3, 4, 8, 8, 16, 3, 6, 8, 16, 16, 32, 4, 6, 12, 16, 32, 32, 64, 4, 8, 12, 24, 32, 64, 64, 128, 5, 8, 16, 24, 48, 64, 128, 128, 256, 5, 10, 16, 32, 48, 96, 128, 256, 256, 512, 6, 10, 20, 32, 64, 96, 192, 256, 512, 512, 1024, 6, 12, 20, 40, 64, 128, 192, 384, 512, 1024, 1024, 2048
Offset: 1

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

Row sums = A011377: (1, 3, 8, 18, 39, ...). A130126 = A130125 * A000012.

Examples

			First few rows of the triangle:
  1;
  1, 2;
  2, 2,  4;
  2, 4,  4,  8;
  3, 4,  8,  8, 16;
  3, 6,  8, 16, 16, 32;
  4, 6, 12, 16, 32, 32, 64;
  ...
		

Crossrefs

Programs

  • Magma
    [[2^(k-1)*Floor((n-k+2)/2): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    Table[2^(k-1)*Floor[(n-k+2)/2], {n,1,12}, {k,1,n}]//Flatten (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    {T(n,k) = 2^(k-1)*floor((n-k+2)/2)}; \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [[2^(k-1)*floor((n-k+2)/2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 06 2019

Formula

T(n,k) = 2^(k-1) * floor((n-k+2)/2). - G. C. Greubel, Jun 06 2019

Extensions

More terms added by G. C. Greubel, Jun 06 2019

A130211 Triangle read by rows: matrix product A054522 * A000012.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 6, 5, 4, 2, 2, 2, 7, 6, 6, 6, 6, 6, 6, 8, 7, 6, 6, 4, 4, 4, 4, 9, 8, 8, 6, 6, 6, 6, 6, 6, 10, 9, 8, 8, 8, 4, 4, 4, 4, 4, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 11, 10, 8, 6, 6, 4, 4, 4, 4, 4, 4, 13, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Gary W. Adamson, May 17 2007

Keywords

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 2, 2;
4, 3, 2, 2;
5, 4, 4, 4, 4;
6, 5, 4, 2, 2, 2;
7, 6, 6, 6, 6, 6, 6;
8, 7, 6, 6, 4, 4, 4, 4;
...
		

Crossrefs

Cf. A000010, A054522, A130212 (product with swapped order), A057660 (row sums).

Programs

Formula

A054522 * A000012 as infinite lower triangular matrices.
T(n,n) = A000010(n).

A130302 A000012 * A130296.

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 3, 2, 1, 15, 4, 3, 2, 1, 21, 5, 4, 3, 2, 1, 28, 6, 5, 4, 3, 2, 1, 36, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Row sums = n^2. A130303 = A130296 * A000012.

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 2, 1;
10, 3, 2, 1;
15, 4, 3, 2, 1;
21, 5, 4, 3, 2, 1;
...
		

Crossrefs

Formula

A000012 * A130296 as infinite lower triangular matrices. Triangular series as the left border; (1,2,3...) in all other columns.
Previous Showing 41-50 of 2635 results. Next