cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 11571 results. Next

A246372 Numbers n such that 2n-1 = product_{k >= 1} (p_k)^(c_k), then n <= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) >= n.
Numbers n such that A064989(2n-1) >= n.

Examples

			1 is present, as 2*1 - 1 = empty product = 1.
2 is present, as 2*2 - 1 = 3 = p_2, and p_{2-1} = p_1 = 2 >= 2.
3 is present, as 2*3 - 1 = 5 = p_3, and p_{3-1} = p_2 = 3 >= 3.
5 is not present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, with 4 < 5.
6 is present, as 2*6 - 1 = 11 = p_5, and p_{5-1} = p_4 = 7 >= 6.
25 is present, as 2*25 - 1 = 49 = p_4^2, and p_3^2 = 5*5 = 25 >= 25.
35 is present, as 2*35 - 1 = 69 = 3*23 = p_2 * p_9, and p_1 * p_8 = 2*19 = 38 >= 35.
		

Crossrefs

Complement: A246371
Union of A246362 and A048674.
Subsequences: A006254 (A111333), A246373 (the primes present in this sequence).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246372(n) = (A064216(n) >= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246372(n), i++; write("b246372.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246372 (MATCHING-POS 1 1 (lambda (n) (>= (A064216 n) n))))

A056221 Image of primes (A000040) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.

Original entry on oeis.org

-1, 4, -6, 30, -18, 42, -30, -22, 128, -112, 98, 90, -78, -70, 36, 248, -232, 158, 150, -280, 182, -142, -130, 420, 210, -198, 222, -210, -1074, 1326, -238, 560, -1092, 1212, -592, 36, 350, -310, 36, 728, -1428, 1548, -378, 402, -1966, 144, 1832, 462, -450, -442
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

a(n) > 0 if and only if n+1 is in A046868. a(n) < 0 if and only if n+1 is in A233671. - Chai Wah Wu, Sep 10 2019

Crossrefs

Programs

  • Maple
    A056221 := proc(n)
            ithprime(n+1)^2-ithprime(n)*ithprime(n+2) ;
    end proc:
    seq(A056221(n),n=1..10) ; # R. J. Mathar, Dec 10 2011
  • Mathematica
    a[n_]:=Prime[n+1]^2-Prime[n]Prime[n+2]; Array[a,50] (* Stefano Spezia, Jul 15 2024 *)

Formula

a(n) = determinant of matrix
| prime(n+1) prime(n)|
| prime(n+2) prime(n+1)|. - Zak Seidov, Jul 23 2008, indices corrected by Gary Detlefs, Dec 09 2011
a(n) = 2*A342567(n+1) for n >= 2. - Hugo Pfoertner, Jun 20 2021

A124270 a(n) = prime(A014612(n)) - A014612(prime(n)). Commutator [A000040,A014612] at n.

Original entry on oeis.org

7, 19, 34, 41, 53, 44, 38, 103, 91, 73, 99, 75, 135, 142, 147, 118, 133, 125, 118, 193, 229, 191, 212, 202, 197, 201, 216, 213, 248, 239, 209, 248, 279, 279, 277, 277, 333, 325, 350, 327, 299, 308, 264, 309, 314, 322, 297, 281, 363, 374, 461, 488, 484, 482
Offset: 1

Views

Author

Jonathan Vos Post, Oct 23 2006

Keywords

Examples

			a(1) = prime(3almostprime(1)) - 3almostprime(prime(1)) = prime(8) - 3almostprime(2) = 19 - 12 = 7.
a(2) = prime(3almostprime(2)) - 3almostprime(prime(2)) = prime(12) - 3almostprime(3) = 37 - 18 = 19.
a(3) = prime(3almostprime(3)) - 3almostprime(prime(3)) = prime(18) - 3almostprime(5) = 61 - 27 = 34.
		

Crossrefs

Cf. A000040 (primes), A014612 (3-almost primes).
Cf. A124268 (prime(3-almost prime(n))), A124269 (3-almost prime(prime(n))).
Cf. A106349 (prime(semiprime(n))), A106350 (semiprime(prime(n))), A122824 (prime(semiprime(n)) - semiprime(prime(n))).

Programs

  • PARI
    lista(nn) = {p = primes(nn); pp = select(x->bigomega(x)==3, vector(nn, n, n)); for (n=1, nn, print1(p[pp[n]] - pp[p[n]], ", "););} \\ Michel Marcus, Oct 15 2014

Formula

a(n) = A000040(A014612(n)) - A014612(A000040(n)).
a(n) = A124268(n) - A124269(n).

A246362 Numbers n such that if 2n-1 = Product_{k >= 1} (p_k)^(c_k), then n < Product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

4, 6, 7, 9, 10, 12, 15, 16, 19, 20, 21, 22, 24, 27, 29, 30, 31, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 75, 76, 78, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 96, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) > n.
Numbers n such that A064989(2n-1) > n.
The sequence grows as:
a(100) = 148
a(1000) = 1449
a(10000) = 14264
a(100000) = 141259
a(1000000) = 1418197
and the powers of 10 occur at:
a(5) = 10
a(63) = 100
a(701) = 1000
a(6973) = 10000
a(70845) = 100000
a(705313) = 1000000
suggesting that the ratio a(n)/n is converging to a constant and an arbitrary natural number is more than twice as likely to be here than in the complement A246361. Compare this to the ratio present in the "inverse" case A246282.

Examples

			4 is present, as 2*4 - 1 = 7 = p_4, and p_{4-1} = p_3 = 5 > 4.
5 is not present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, with 4 < 5.
6 is present, as 2*6 - 1 = 11 = p_5, and p_{5-1} = p_4 = 7 > 6.
35 is present, as 2*35 - 1 = 69 = 3*23 = p_2 * p_9, and p_1 * p_8 = 2*19 = 38 > 35.
		

Crossrefs

Complement: A246361.
Setwise difference of A246372 and A048674.

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246362(n) = (A064216(n) > n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246362(n), i++; write("b246362.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246362 (MATCHING-POS 1 1 (lambda (n) (> (A064216 n) n))))

A065858 m-th composite number c(m) = A002808(m), where m is the n-th prime number: a(n) = A002808(A000040(n)).

Original entry on oeis.org

6, 8, 10, 14, 20, 22, 27, 30, 35, 44, 46, 54, 58, 62, 66, 75, 82, 85, 92, 96, 99, 108, 114, 120, 129, 134, 136, 142, 144, 148, 166, 171, 178, 182, 194, 196, 204, 210, 215, 221, 230, 232, 245, 247, 252, 254, 268, 285, 289, 291, 296, 302, 304, 318, 324, 330, 338
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Comments

Composites (A002808) with prime (A000040) subscripts. a(n) U A175251(n) = A002808(n). Subsequence of A022449 (composites (A002808) with noncomposite (A008578) subscripts), a(n) = A022449(n+1). - Jaroslav Krizek, Mar 14 2010

Crossrefs

Programs

  • Maple
    P,C:= selectremove(isprime,[seq(i,i=2..10^3)]):
    seq(C[P[i]],i=1..100); # Robert Israel, Mar 09 2025
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[#] + 1 & , n + PrimePi[n] + 1];
    a[n_] := Composite[Prime[n]];
    Array[a, 100] (* Jean-François Alcover, Jan 26 2018, after Robert G. Wilson v *)

A332461 a(n) = Product_{d|n, d>1} A000040(A297113(d)), where A000040(n) gives the n-th prime, and A297113(n) = the excess of n plus the index of the largest dividing prime (A046660 + A061395).

Original entry on oeis.org

1, 2, 3, 6, 5, 18, 7, 30, 15, 50, 11, 270, 13, 98, 75, 210, 17, 450, 19, 1050, 147, 242, 23, 9450, 35, 338, 105, 3234, 29, 11250, 31, 2310, 363, 578, 245, 47250, 37, 722, 507, 57750, 41, 43218, 43, 9438, 2625, 1058, 47, 727650, 77, 2450, 867, 17238, 53, 22050, 605, 210210, 1083, 1682, 59, 8268750, 61, 1922, 8085, 30030
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Programs

  • PARI
    A297113(n) = if(1==n, 0, (primepi(vecmax(factor(n)[, 1])) + (bigomega(n)-omega(n))));
    A332461(n) = if(1==n,1, my(m=1); fordiv(n,d,if(d>1, m *= prime(A297113(d)))); (m));

Formula

a(n) = Product_{d|n, d>1} A000040(A297113(d)).
a(p) = p for all primes p.
For all n >= 0, a(2^n) = A002110(n).
For all n >= 1:
A046523(a(n)) = A324202(n).
A048675(a(n)) = A156552(n).
A097248(a(n)) = A332462(n).

A182986 Zero together with the prime numbers (A000040).

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Keywords

Comments

These numbers are the possible characteristics of a field.
First differences are in A054541. - Omar E. Pol, Oct 31 2013
Also A158611 without its second term. - Omar E. Pol, Nov 01 2013
The ideals generated by a(n) form Spec(Z), the set of prime ideals of the ring of integers. Due to its importance in algebraic geometry, algebraic geometers often consider 0 to be an honorary prime. - Keith J. Bauer, Jan 09 2024

Crossrefs

Cf. A141468.
Complement of A018252. - Arkadiusz Wesolowski, Sep 15 2011

Programs

A251720 a(n) = (p_n)^2 * p_{n+1}, where p_n is the n-th prime, A000040(n).

Original entry on oeis.org

12, 45, 175, 539, 1573, 2873, 5491, 8303, 15341, 26071, 35557, 56129, 72283, 86903, 117077, 165731, 212341, 249307, 318719, 367993, 420991, 518003, 613121, 768337, 950309, 1050703, 1135163, 1247941, 1342553, 1621663, 2112899, 2351057, 2608891, 2878829, 3352351
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2014

Keywords

Comments

Subsequence of A014612: a(1)=12=A014612(2), a(2)=45=A014612(10) - Zak Seidov, Apr 26 2016

Crossrefs

Programs

  • Mathematica
    a251720[n_Integer] := Prime[#]^2*Prime[# + 1] & /@ Range[n]; a251720[35] (* Michael De Vlieger, Dec 14 2014 *)
    #[[1]]^2 #[[2]]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Mar 12 2015 *)

Formula

a(n) = A000040(n) * A000040(n) * A000040(n+1).
a(n) = A000040(n) * A006094(n).
a(n) = A001248(n) * A000040(n+1).

A357983 Second MTF-transform of the primes (A000040). Replace prime(k) with prime(A064988(k)) in the prime factorization of n.

Original entry on oeis.org

1, 2, 5, 4, 11, 10, 23, 8, 25, 22, 31, 20, 47, 46, 55, 16, 59, 50, 103, 44, 115, 62, 97, 40, 121, 94, 125, 92, 137, 110, 127, 32, 155, 118, 253, 100, 197, 206, 235, 88, 179, 230, 233, 124, 275, 194, 257, 80, 529, 242, 295, 188, 419, 250, 341, 184, 515, 274
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the MTF-transform as shifting a number's prime indices along a function; see the Mathematica program.

Examples

			First, we have
- 4 = prime(1) * prime(1),
- A000040(1) = 2,
- A064988(4) = prime(2) * prime(2) = 9.
Similarly, A064988(3) = 5. Next,
- 35 = prime(3) * prime(4),
- A064988(3) = 5,
- A064988(4) = 9,
- a(35) = prime(5) * prime(9) = 253.
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064989, A357977, A357980.
Applying the transformation only once gives A064988.
The union is A076610 (numbers whose prime indices are themselves prime).
For partition numbers instead of primes we have A357979.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[mtf[Prime]],100]

A070748 a(n) = signum(sin(prime(n))), where signum=A057427, prime=A000040.

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 04 2002

Keywords

Crossrefs

Programs

Previous Showing 41-50 of 11571 results. Next