cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 139 results. Next

A225670 Slowest-growing sequence of odd primes p where 1/(p+1) sums to 1 without actually reaching it.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 2539, 936599, 127852322431, 510819260848900502567, 1553192364608434843485965159509450536731, 52119893982548112392303882371161186032080710958633917215400463948724068502699
Offset: 1

Views

Author

Jonathan Sondow, May 11 2013

Keywords

Comments

Is there a finite set of odd primes p where 1/(p+1) sums exactly to 1? (This would be an analog of 1/(2+1) + 1/(3+1) + 1/(5+1) + 1/(7+1) + 1/(11+1) + 1/(23+1) = 1 -- see A000058.)

Crossrefs

Similar to A075442, A181503, A225669.
Cf. A000058.
See also A046689.

Programs

  • Mathematica
    a[n_] := a[n] = Block[ {sm = Sum[ 1/(a[i] + 1), {i, n - 1}]}, NextPrime[ Max[ a[n - 1], 1/(1 - sm)]]]; a[0] = 2; Array[ a, 20]

A252730 a(n) = P_n(n) with P_0(z) = z+1 and P_n(z) = z + P_{n-1}(z)*(P_{n-1}(z)-z) for n>1.

Original entry on oeis.org

1, 3, 17, 871, 4870849, 483209576974811, 36956045653220845240164417232897, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2014

Keywords

Crossrefs

Main diagonal of A177888.

Programs

  • Maple
    p:= proc(n) option remember;
          z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
        end:
    a:= n-> p(n)(n):
    seq(a(n), n=0..8);
  • Mathematica
    p[n_] := p[n] = Function[z, z + If[n == 0, 1, p[n-1][z]*(p[n-1][z] - z)]];
    a[n_] := p[n][n];
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jun 12 2018, from Maple *)

A275664 a(n) is the sum of the LCM and GCD of all previous terms, with a(0) = 2.

Original entry on oeis.org

2, 4, 6, 14, 86, 3614, 6526886, 21300113901614, 226847426110843688722000886, 25729877366557343481074291996721923093306518970391614
Offset: 0

Views

Author

Andres Cicuttin, Aug 04 2016

Keywords

Comments

Starting from 1, instead of from 2, it is generated A129871 (A variant of Sylvester's sequence A000058).

Crossrefs

Programs

  • Mathematica
    a = {2}; Do[AppendTo[a, LCM @@ a + GCD @@ a], {i, 1, 10}]; Column[a]

Formula

a(0) = 2, a(n+1) = lcm(a(0),a(1),..,a(n)) + gcd(a(0),a(1),..,a(n)).

A293390 Least m such that the exponents in expression for n as a sum of distinct powers of 2 are pairwise distinct mod m; a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 4, 2, 4, 3, 4, 1, 3, 2, 5, 3, 3, 4, 5, 2, 5, 4, 5, 3, 5, 4, 5, 1, 2, 3, 3, 2, 4, 5, 6, 3, 4, 3, 6, 4, 4, 5, 6, 2, 3, 5, 6, 4, 6, 5, 6, 3, 6, 5, 6, 4, 6, 5, 6, 1, 4, 2, 4, 3, 5, 3, 7, 2, 4, 4, 4, 5, 5, 6, 7, 3, 5, 4, 7, 3, 5, 6
Offset: 0

Views

Author

Rémy Sigrist, Oct 08 2017

Keywords

Comments

The set of exponents in expression for n as a sum of distinct powers of 2 corresponds to the n-th row of A133457.
The sum of digits of n in base 2^a(n), say s, can be computed without carry in base 2; the Hamming weight of s equals the Hamming weight of n.
a(n) >= A000120(n) for any n > 0.
Apparently, a(n) = A000120(n) iff n = 0 or n belongs to A100290.
a(n) <= A070939(n) for any n >= 0.
For any sequence s of distinct nonnegative integers (s(n) being defined for n >= 0):
- let D_s be defined for any n > 0 by D_s(n) = a(Sum_{k=0..n-1} 2^s(k)),
- then D_s is the discriminator of s as introduced by Arnold, Benkoski, and McCabe in 1985,
- D_s(1) = 1,
- D_s(n) >= n for any n >= 1,
- D_s(n+1) >= D_s(n) for any n >= 1.

Examples

			For n=42:
- 42 = 2^5 + 2^3 + 2^1,
- 5 mod 1 = 3 mod 1,
- 5 mod 2 = 3 mod 2,
- 5 mod 3, 3 mod 3 and 1 mod 3 are all distinct,
- hence a(42) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,D,k;
      L:= convert(n,base,2);
      L:= select(t -> L[t+1]=1, [$0..nops(L)-1]);
      if nops(L) = 1 then return 1 fi;
      D:= {seq(seq(L[j]-L[i],i=1..j-1),j=2..nops(L))};
      D:= `union`(seq(numtheory:-divisors(i),i=D));
      min({$2..max(D)+1} minus D)
    end proc:
    0, seq(f(i),i=1..100); # Robert Israel, Oct 08 2017
  • Mathematica
    {0}~Join~Table[Function[r, SelectFirst[Range@ 10, Length@ Union@ Mod[r, #] == Length@ r &]][Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[n, 2]], {n, 86}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    a(n) = if (n, my (d=Vecrev(binary(n)), x = []); for (i=1, #d, if (d[i], x = concat(x, i-1))); for (m=1, oo, if (#Set(vector(#x, i, x[i]%m))==#x, return (m))), return (0))

Formula

a(2*n) = a(n) for any n >= 0.
a(2^k-1) = k for any k >= 0.
a(n) = 1 iff n = 2^k for some k >= 0.
a(n) = 2 iff n belongs to A173195.
a(Sum_{k=1..n} 2^(k^2)) = A016726(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000069(k)) = A062383(n) for any n >= 1.
a(Sum_{k=0..n} 2^(2^k)) = A270097(n) for any n >= 0.
a(Sum_{k=1..n} 2^A000045(k+1)) = A270151(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000041(k)) = A270176(n) for any n >= 1.
a(A076793(n)) = A272633(n) for any n >= 0.
a(Sum_{k=1..n} 2^A001969(k)) = A272881(n) for any n >= 1.
a(Sum_{k=1..n} 2^A005823(k)) = A272882(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000215(k-1)) = A273037(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000108(k)) = A273041(n) for any n >= 1.
a(Sum_{k=1..n} 2^A001566(k)) = A273043(n) for any n >= 1.
a(Sum_{k=1..n} 2^A003095(k)) = A273044(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000058(k-1)) = A273056(n) for any n >= 1.
a(Sum_{k=1..n} 2^A002808(k)) = A273062(n) for any n >= 1.
a(Sum_{k=1..n} 2^(k!)) = A273064(n) for any n >= 1.
a(Sum_{k=1..n} 2^(k^k)) = A273068(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000110(k)) = A273237(n) for any n >= 1.
a(Sum_{k=1..n} 2^A001147(k)) = A273377(n) for any n >= 1.

A348640 Denominators of the remainders in the greedy Egyptian fraction representation of 1 with square denominators (A348626).

Original entry on oeis.org

1, 4, 2, 4, 36, 36, 1764, 2352, 115248, 416333400, 107225418169800, 562904175532925098845000, 1857180475556752726157213892231405000, 424594887903818740281781489141947299544299873193026842805000, 27616236678198713245845367246922973802897093015095664467139174240964043973815461112656369429045000
Offset: 0

Views

Author

Max Alekseyev, Oct 26 2021

Keywords

Comments

a(n) divides LCM( A348626(1), ..., A348626(n) )^2.

Examples

			The first few remainders are 1, 3/4, 1/2, 1/4, 5/36, 1/36, 13/1764, 1/2352, 1/115248, 11/416333400, ... - _N. J. A. Sloane_, Apr 21 2025
		

Crossrefs

Cf. A000058, A348626, A348641 (numerators), A382719.

Programs

  • PARI
    s=1; for(n=1, 20, print1(denominator(s), ", "); t=sqrtint(floor(1/s))+1; s-=1/t^2);

Formula

a(n) = denominator of 1 - Sum_{k=1..n} 1/A348626(k)^2.

A348641 Numerators of the remainders in the greedy Egyptian fraction representation of 1 with square denominators (A348626).

Original entry on oeis.org

1, 3, 1, 1, 5, 1, 13, 1, 1, 11, 817, 10252633, 100287877217, 6528073355352461938177, 62417959978427831731164878741347502689913, 70288410375198910851231147751405037331087262102769745506188780420713, 1637848790982120651632223869737258212156187623721099799629950249330321081907360495884020503587938103781073751577
Offset: 0

Views

Author

Max Alekseyev, Oct 26 2021

Keywords

Examples

			The first few remainders are 1, 3/4, 1/2, 1/4, 5/36, 1/36, 13/1764, 1/2352, 1/115248, 11/416333400, ... - _N. J. A. Sloane_, Apr 21 2025
		

Crossrefs

Cf. A000058, A348626, A348640 (denominators), A382719.

Programs

  • PARI
    s=1; for(n=1, 20, print1(numerator(s), ", "); t=sqrtint(floor(1/s))+1; s-=1/t^2);

Formula

a(n) = numerator of 1 - Sum_{k=1..n} 1/A348626(k)^2.

A369607 Greedy solution a(1) < a(2) < ... to 1/a(1) + 1/a(2) + ... = (1 - 1/a(1)) * (1 - 1/a(2)) * ....

Original entry on oeis.org

3, 6, 29, 803, 643727, 414383582243, 171713753231982206218247, 29485613049014079571725771288849499850026859243, 869401376876189366008603664962520703088459987798626788985159595026678611496977754082506135887
Offset: 1

Views

Author

Max Alekseyev, Jan 27 2024

Keywords

Comments

For any n, (x1, x2, ..., xn) = (a(1), a(2), ..., a(n-1), a(n)-1) forms a solution to 1/x1 + ... + 1/xn = (1 - 1/x1) * ... * (1 - 1/xn), proving that A369470(n) >= A369469(n) >= 1.

Crossrefs

Formula

a(n+2) = a(n+1)^2 + (a(n) - 2)*a(n+1) - a(n)^3 + 2*a(n)^2 - 2*a(n) + 2.

A065035 a(n+1) = a(n)^2 + 3*a(n) + 1.

Original entry on oeis.org

0, 1, 5, 41, 1805, 3263441, 10650056950805, 113423713055421844361000441, 12864938683278671740537145998360961546653259485195805, 165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185441
Offset: 0

Views

Author

Henry Bottomley, Nov 03 2001

Keywords

Comments

a(k) is the optimal competitive ratio of any memoryless algorithm for the weighted k-server problem (Chiplunkar and Vishwanathan). - David Eppstein, Dec 31 2013
This is a divisibility sequence, that is if n divides m then a(n) divides a(m). Cf. A002065. - Peter Bala, Mar 26 2018

Examples

			a(3) = a(2)^2 + 3*a(2) + 1 = 25 + 15 + 1 = 41.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n<1,0,a(n-1)^2+3*a(n-1)+1);
    
  • PARI
    { for (n=0, 12, a=if(n, a^2 + 3*a + 1, 0); write("b065035.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009

Formula

a(n) = A007018(n)-1 = A000058(n)-2 = A060136(3, n) = A028387(a(n-1)). - Michael Somos, Feb 10 2002

A084594 a(n) = Sum_{r=0..2^(n-1)} Binomial(2^n,2r)*3^r.

Original entry on oeis.org

1, 4, 28, 1552, 4817152, 46409906716672, 4307758882900393634270543872, 37113573186414494550922197215584520229965687291643953152
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 31 2003

Keywords

Comments

a(n)/A084595(n) converges to sqrt(3). Related to Newton's iteration.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2^n, 2 r]3^r, {r, 0, 2^(n - 1)}], {n, 0, 8}]
    Table[Simplify[Expand[(1/2) ((1 + Sqrt[3])^(2^n) + (1 - Sqrt[3])^(2^n))]], {n, 0, 7}] (* Artur Jasinski, Oct 11 2008 *)

Formula

a(n) = ( (1+sqrt(3))^(2^n) + (1-sqrt(3))^(2^n) )/2.
a(n) = A026150(2^n).
a(n) = 2*a(n-1)^2 - A001146(n-1), n>1.
a(n) = a(n-1)^2 + 3*A084595(n-1)^2.

A084595 For n > 0: a(n) = Sum_{r=0..2^(n-1)-1} binomial(2^n, 2r+1)*3^r.

Original entry on oeis.org

1, 2, 16, 896, 2781184, 26794772135936, 2487085750646543836443049984, 21427531469765285263614058238314319540132878612321796096
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), May 31 2003

Keywords

Comments

A084594(n)/a(n) converges to sqrt(3). Related to Newton's iteration.
a(n) is divisible by 2^n.

Crossrefs

Programs

  • Mathematica
    For n>0: Table[Sum[Binomial[2^n, 2 r + 1]3^r, {r, 0, 2^(n - 1) - 1}], {n, 1, 8}]
  • PARI
    a(n) = if (n==0, 1, sum(r=0, 2^(n-1)-1, binomial(2^n, 2*r+1)*3^r)); \\ Michel Marcus, Sep 09 2019; corrected Jun 13 2022

Formula

a(n) = ((1+sqrt(3))^(2^n) - (1-sqrt(3))^(2^n))/(2*sqrt(3)).
For n > 1:
a(n) = 2*a(n-1)*sqrt(3*a(n-1)^2 + A001146(n-1)).
a(n) = 2*a(n-1)*A084594(n-1).
a(n) = A002605(2^n).
Previous Showing 101-110 of 139 results. Next