cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A000059 Numbers k such that (2k)^4 + 1 is prime.

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 14, 17, 23, 24, 27, 28, 37, 40, 41, 44, 45, 53, 59, 66, 70, 71, 77, 80, 82, 87, 90, 97, 99, 102, 105, 110, 114, 119, 121, 124, 127, 133, 136, 138, 139, 144, 148, 156, 160, 164, 167, 170, 176, 182, 187, 207, 215, 218, 221, 233, 236, 238, 244, 246
Offset: 1

Views

Author

Keywords

Examples

			(2 * 2)^4 + 1 = 4^4 + 1 = 17, which is prime, so 2 is in the sequence.
(2 * 3)^4 + 1 = 6^4 + 1 = 1297, which is prime, so 3 is in the sequence.
(2 * 4)^4 + 1 = 8^4 + 1 = 4097 = 17 * 241, so 4 is not in the sequence.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A037896 (primes of the form n^4 + 1).

Programs

  • Magma
    [n: n in [1..10000] | IsPrime((2*n)^4+1)] # Vincenzo Librandi, Nov 18 2010
    
  • Maple
    A000059:=n->`if`(isprime((2*n)^4+1),n,NULL): seq(A000059(n), n=1..250); # Wesley Ivan Hurt, Aug 26 2014
  • Mathematica
    Select[Range[300], PrimeQ[(2 * #)^4 + 1] &] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
  • PARI
    for(n=1,10^3,if(isprime( (2*n)^4+1 ),print1(n,", "))) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008 [edited by Michel Marcus, Aug 27 2014]
    
  • Python
    from sympy import isprime
    print([n for n in range(10**3) if isprime(16*n**4+1)])
    # Derek Orr, Aug 27 2014

Formula

a(n) = A000068(n+1)/2 for n >= 1. [Corrected by Jianing Song, Feb 03 2019]

Extensions

More terms from Hugo Pfoertner, Aug 27 2003

A067662 Numbers n such that n^2 + 1 and n^4 + 1 are primes.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 24, 54, 56, 74, 90, 160, 180, 204, 210, 340, 430, 436, 466, 556, 584, 690, 760, 930, 936, 966, 986, 1144, 1150, 1246, 1406, 1434, 1586, 1644, 1700, 1824, 1850, 1870, 1910, 2074, 2126, 2224, 2260, 2266, 2336, 2360, 2536, 2604, 2646, 2676
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Crossrefs

Intersection of A000068 and A005574.

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n^2+1) and IsPrime(n^4+1)] // Vincenzo Librandi, Aug 07 2010

A217796 Primes of the form n^4+1 such that (n+2)^4+1 is also prime.

Original entry on oeis.org

17, 257, 4477457, 8503057, 40960001, 59969537, 384160001, 5802782977, 58594980097, 94197431057, 102627966737, 114733948177, 283982410001, 330123790097, 381671897617, 405519334417, 691798081537, 741637881857, 1700843738897, 1749006250001, 2073600000001
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Comments

The corresponding n are in A217795.

Examples

			257 is in the sequence because  4^4+1 = 257 and (4+2)^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `, n^4+1):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, p]], {n, 0, 3500}];lst
    Select[Partition[Table[n^4+1,{n,1300}],3,1],AllTrue[{#[[1]],#[[3]]}, PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2020 *)

A235982 Numbers n of the form p^4 + 1 (for prime p) such that n^4 + 1 is also prime.

Original entry on oeis.org

82, 38950082, 47458322, 131079602, 1982119442, 25856961602, 58120048562, 602425897922, 1053022816562, 1267247769842, 3491998578722, 7181161893362, 7759350084722, 10756569837842, 16948379819282, 28424689653362, 33122338550402, 36562351115762, 50897394646082
Offset: 1

Views

Author

Derek Orr, Jan 17 2014

Keywords

Comments

All numbers are congruent to 2 mod 20.

Examples

			10756569837842 = 1811^4 + 1 (1811 is prime) and 10756569837842^4 + 1 is prime, so 10756569837842 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    nfp4Q[n_]:=Module[{p=Surd[n-1,4]},AllTrue[{p,n^4+1},PrimeQ]]; Select[ Range[ 2700]^4+ 1,nfp4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 08 2019 *)
  • Python
    import sympy
    from sympy import isprime
    {print(n**4+1) for n in range(10000) if isprime(n) if isprime((n**4+1)**4+1)}

A337608 Decimal expansion of Lal's constant: the Hardy-Littlewood constant for A217795.

Original entry on oeis.org

7, 9, 2, 2, 0, 8, 2, 3, 8, 1, 6, 7, 5, 4, 1, 6, 6, 8, 7, 7, 5, 4, 5, 5, 5, 6, 6, 5, 7, 9, 0, 2, 4, 1, 0, 1, 1, 2, 8, 9, 3, 2, 2, 5, 0, 9, 8, 6, 2, 2, 1, 1, 1, 7, 2, 2, 7, 9, 7, 3, 4, 5, 2, 5, 6, 9, 5, 1, 4, 1, 5, 4, 9, 4, 4, 1, 2, 4, 9, 0, 6, 6, 0, 2, 9, 5, 3, 8, 8, 3, 9, 8, 0, 2, 7, 5, 2, 9, 2, 7, 8, 7, 3, 9, 7, 3
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Shanks (1967) conjectured that the number of primes of the form (m + 1)^4 + 1 such that (m - 1)^4 + 1 is also a prime (A217795 plus 1), with m <= x, is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section, evaluated it by 0.79220 and named it after the mathematician Mohan Lal, who conjectured the asymptotic formula without evaluating this constant.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.792208238167541668775455566579024101128932250986221...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 90-91.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (p-8)*(p+1)^4/((p-1)^4*p);
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17] * Pi^4/(2^7 * Log[1+Sqrt[2]]^2) * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

Equals (Pi^4/(2^7 * log(1+sqrt(2))^2)) * Product_{primes p == 1 (mod 8)} (1 - 4/p)^2 * ((p + 1)/(p - 1))^4 * p*(p-8)/(p-4)^2 = (Pi^2/32) * A088367^2 * A334826^2 * A210630 = 2 * A337607^2 * A210630.

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021

A073476 Numbers k such that k^4 + 1, (k+2)^4 + 1 and (k+4)^4 + 1 are all primes.

Original entry on oeis.org

2, 2222, 2732, 3998, 5356, 5358, 5626, 8034, 9402, 9972, 10006, 10930, 12188, 12322, 12702, 13372, 14536, 15038, 15962, 21396, 24704, 25446, 27118, 29566, 36126, 36604, 36732, 36734, 37550, 37552, 37554, 44176, 44218, 48164, 48978
Offset: 1

Views

Author

Martin Raab, Aug 26 2002

Keywords

Examples

			2222^4+1, 2224^4+1 and 2226^4+1 are prime
		

Crossrefs

Cf. A000068, n such that n^4+1 is prime.

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    R:= select(t -> isprime(t^4+1), [seq(i,i=2..N,2)]):
    V:= select(i -> R[i+2]=R[i]+4, [$1..nops(R)-2]):
    R[V]; # Robert Israel, Apr 20 2017
  • Mathematica
    Select[Range[5000], PrimeQ[ #^4 + 1] && PrimeQ[(# + 2)^4 + 1] && PrimeQ[(# + 4)^4 + 1] & ]

Extensions

More terms from Robert G. Wilson v, Aug 28 2002

A087738 Square array: T(n,k) gives n-th number a such that a^(2^k)+1 is prime (a generalized Fermat).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 4, 2, 1, 10, 6, 4, 2, 1, 12, 10, 6, 4, 2, 1, 16, 14, 16, 118, 44, 30, 1, 18, 16, 20, 132, 74, 54, 102, 1, 22, 20, 24, 140, 76, 96, 162, 120, 1, 28, 24, 28, 152, 94, 112, 274, 190, 278, 1, 30, 26, 34, 208, 156, 114, 300, 234, 614, 46, 1, 36, 36, 46, 240, 158
Offset: 0

Views

Author

Jeppe Stig Nielsen, Oct 01 2003

Keywords

Examples

			{1}; {2,1}; {4,2,1}; ...
See the well-formed array on Gallot's page.
		

References

  • Harvey Dubner, J. Recr. Math., 18, 1986.

Crossrefs

A121979 Numbers k such that (2*k^2)^4 + 1 is prime.

Original entry on oeis.org

1, 11, 12, 20, 24, 27, 28, 34, 40, 44, 61, 74, 79, 82, 95, 96, 119, 131, 136, 147, 148, 156, 164, 170, 173, 180, 187, 209, 211, 238, 252, 255, 269, 279, 299, 328, 337, 340, 343, 371, 379, 380, 388, 397, 413, 452, 462, 473, 476, 483, 516, 522, 527, 530, 539, 572
Offset: 1

Views

Author

Alexander Adamchuk, Sep 10 2006

Keywords

Comments

Corresponding primes of the form (2*k^2)^4 + 1 are {17, 3429742097, 6879707137, 409600000001, ...}.
There are consecutive twin pairs {a(n),a(n+1)} = {11,12}, {27,28}, {95,96},{147,148}, ...

Crossrefs

Cf. A000068.

Programs

  • Mathematica
    Select[Range[1000],PrimeQ[(2*#1^2)^4+1]&]
  • PARI
    is(n)=isprime((2*n^2)^4+1) \\ Charles R Greathouse IV, Jun 13 2017

A217129 Numbers n such that n^4 + 1 is not prime.

Original entry on oeis.org

3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..100] |not IsPrime(n^4+1)];
  • Mathematica
    Select[Range[100], ! PrimeQ[#^4 + 1] &]
Previous Showing 41-50 of 54 results. Next