cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1370 results. Next

A135084 a(n) = A000110(2^n-1).

Original entry on oeis.org

1, 5, 877, 1382958545, 10293358946226376485095653, 8250771700405624889912456724304738028450190134337110943817172961
Offset: 1

Views

Author

Thomas Wieder, Nov 18 2007

Keywords

Comments

Number of set partitions of all nonempty subsets of a set, Bell(2^n-1).

Examples

			Let S={1,2,3,...,n} be a set of n elements and let
SU be the set of all nonempty subsets of S. The number of elements of SU is |SU| = 2^n-1. Now form all possible set partitions from SU where the empty set is excluded. This gives a set W and its number of elements is |W| = Sum_{k=1..2^n-1} Stirling2(2^n-1,k).
For S={1,2} we have SU = { {1}, {2}, {1,2} } and W =
{
{{1}, {2}, {1, 2}},
{{1, 2}, {{1}, {2}}},
{{2}, {{1}, {1, 2}}},
{{1}, {{2}, {1, 2}}},
{{{1}, {2}, {1, 2}}}
}
and |W| = 5.
		

Crossrefs

Programs

  • Maple
    ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n,nend,arg,k,w; nend:=5; for n from 1 to nend do arg:=2^n-1; w[n]:=sum((stirling2(arg,k)), k=1..arg); od; print(w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9],w[10]); end proc;
  • Mathematica
    BellB[2^Range[6]-1] (* Harvey P. Dale, Jul 22 2012 *)
  • Python
    from sympy import bell
    def A135084(n): return bell(2**n-1) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = Sum_{k=1..2^n-1} Stirling2(2^n-1,k) = Bell(2^n-1), where Stirling2(n, k) is the Stirling number of the second kind and Bell(n) is the Bell number.

A146094 Bell numbers (A000110) read mod 4.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n) = a(n-12). - Charles R Greathouse IV, Jul 06 2011 [See A054767. - Jianing Song, Jun 20 2025]

A152431 Eigentriangle, row sums = A000110, the Bell numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 5, 22, 6, 4, 5, 15, 92, 22, 12, 10, 15, 52, 426, 92, 44, 30, 30, 52, 203, 2146, 426, 184, 110, 90, 104, 203, 877, 11624, 2146, 852, 460, 330, 312, 406, 877, 4140, 67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147
Offset: 1

Views

Author

Gary W. Adamson, Dec 04 2008

Keywords

Comments

Row sums = the Bell numbers, A000110, starting with offset 1: (1, 2, 5, 15, 52,...).
Left border = A074664 (1, 1, 2, 6, 22 92, 426,...), the INVERTi transform of (1, 2, 5, 15, 52,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 2;
6, 2, 2, 5;
22, 6, 4, 5, 15;
92, 22, 12, 10, 15, 52;
426, 92, 44, 30, 30, 52, 203;
2146, 426, 184, 110, 90, 104, 203, 877;
11624, 2146, 852, 460, 330, 312, 406, 877, 4140;
67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147;
411142, 67146, 23248, 10730, 6390, 4784, 4466, 5262, 8280, 21147, 115975;
...
Row 4 = (6, 2, 2, 5) = termwise products of (6, 2, 1, 1) and (1, 1, 2, 5).
		

Crossrefs

Formula

Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A074664 in every column: (1, 1, 2, 6, 22, 92, 426,...). Q = a matrix with the Bell numbers (1, 1, 2, 5, 15,...) as the main diagonal and the rest zeros.

A154107 A000110 / A014182: (A154107 convolved with A014182 = Bell numbers).

Original entry on oeis.org

1, 1, 3, 5, 15, 61, 207, 881, 4491, 21493, 117543, 710021, 4266279, 28107745, 196120515, 1397747525, 10648637151, 84304440685, 688868927151, 5913133211249, 52348170504555, 479326416322933, 4557380168574135, 44560107679838549, 449806788855058407, 4680686977970550721
Offset: 0

Views

Author

Gary W. Adamson, Jan 04 2009

Keywords

Comments

A000110 / A014182 = (the eigensequence of Pascal's triangle) /
(eigensequence of the inverse of Pascal's triangle).
A014182 = expansion of exp(1-x-exp(-x)).

Examples

			A000110 = 52 = (1, 1, 3, 5, 15, 61) convolved with (1, 0, -1, 1, 2, -9)
= (61 - 5 + 3 + 2 - 9)
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*Sum[(-1)^(n-k-m)*StirlingS2[n-k+1, m+1], {m, 0, n-k}], {k, 0, n}]==BellB[n], {n, 0, nmax}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)

Formula

A000110 / A014182 = (1, 1, 2, 5, 15, 52, 203,...) / (1, 0, -1, 1, 2, -9, 9, 50,...).

Extensions

a(12) corrected and more terms added from Vaclav Kotesovec, Jul 26 2021

A165194 Triangle of 2^n terms by rows, left half of (n+1)-th row = row n; right half = "reverse and increment" row n; using terms in A000110.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 2, 5, 15, 5, 2, 5, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 06 2009

Keywords

Comments

Row sums = A000110, the Bell sequence starting with offset 1; (1, 2, 5, 15,...).
Rows tend to A165195.

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 2, 1;
1, 1, 2, 1, 2, 5, 2, 1;
1, 1, 2, 1, 2, 5, 2, 1, 2, 5, 15, 5, 2, 5, 2, 1;
...
For example: row 4, left half = (1, 1, 2, 1); right half = (1, 2, 1, 1)
replaced with the next higher Bell numbers: (2, 5, 2, 1). Appending the two \kQ halves, we obtain row 4: (1, 1, 2, 1, 2, 5, 2, 1), sum = 15 = A000110(4).
		

Crossrefs

Formula

Given the Bell sequence, A000110: (1, 1, 2, 5, 15,...); row 1 = 1, row 2 =
(1, 1);...where left half of row (n+1) = row n. Right half of row (n+1)
= reversal of row n, replacing terms with the next Bell number.

A165195 Rows of triangle A165194 tend to this sequence; generated from A000110.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 2, 1, 2, 5, 15, 5, 2, 5, 2, 1, 2, 5, 15, 5, 15, 52, 15, 5, 2, 5, 15, 5, 2, 5, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 06 2009

Keywords

Examples

			Given terms in the Bell sequence, A000110; A165195 begins (1, 1, 2, 1,... then to obtain the first 2^3 terms, the first 2^2 terms = (1, 1, 2, 1,... then append to the latter the reversal of (1, 1, 2, 1) = (1, 2, 1, 1) but incremented with the next higher Bell number = (2, 5, 2, 1). The first 2^3 terms are thus (1, 1, 2, 1, 2, 5, 2, 1). Repeat with analogous operations to obtain 2^4 terms, and so on..
		

Crossrefs

Formula

The sequence can be generated from strings of 2^n terms starting (1, 1,... then the next string of 2^(n+1) terms is obtained by appending a "reverse and increment" substring to the previous substring.

A173108 Triangle, A000110 in every column > 0, shifted down twice.

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 15, 2, 1, 52, 5, 1, 203, 15, 2, 1, 877, 52, 5, 1, 4140, 203, 15, 2, 1, 21147, 877, 52, 5, 1, 115975, 4140, 203, 15, 2, 1, 678570, 21147, 877, 52, 5, 1, 4213597, 115975, 4140, 203, 15, 2, 1, 27644437, 678570, 21147, 877, 52, 5, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Comments

Row sums = A173109: (1, 1, 3, 6, 18, 58, 221, 935, ...).
Let the triangle = M. Then lim_{n->oo} M^n = A173110: (1, 1, 3, 6, 20, 60, ...).

Examples

			First few rows of the triangle:
       1;
       1;
       2,    1;
       5,    1;
      15,    2,   1;
      52,    5,   1;
     203,   15,   2,  1;
     877,   52,   5,  1;
    4140,  203,  15,  2, 1;
   21147,  877,  52,  5, 1;
  115975, 4140, 203, 15, 2, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := BellB[n - 2 k];
    Table[T[n, k], {n, 0, 10}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Apr 22 2022 *)
  • PARI
    B(n) = sum(k=0, n, stirling(n, k, 2)); \\ A000110
    tabf(nn) = for (n=0, nn, for(k=0, n\2, print1(B(n-2*k), ", "));); \\ Michel Marcus, Nov 19 2022

Formula

Bell sequence in every column, for columns > 0, shifted down twice.

Extensions

Keyword tabf and more terms from Michel Marcus, Nov 19 2022

A179508 a(n) is the unique integer such that Sum_{k=0..p-1} b(k)/(-n)^k == a(n) (mod p) for any prime p not dividing n, where b(0), b(1), b(2), ... are Bell numbers given by A000110.

Original entry on oeis.org

2, 1, 2, -1, 10, -43, 266, -1853, 14834, -133495, 1334962, -14684569, 176214842, -2290792931, 32071101050, -481066515733, 7697064251746, -130850092279663, 2355301661033954, -44750731559645105, 895014631192902122, -18795307255050944539
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 17 2010

Keywords

Comments

On July 17, 2010 Zhi-Wei Sun conjectured that a(n) exists for every n=1,2,3,... He noted that a(1)=2 since Sum_{k=0..p-1} (-1)^k * b(k) == b(p) (mod p), and conjectured that a(2)=1, a(3)=2, a(4)=-1, a(5)=10, a(6)=-43, a(7)=266, a(8)=-1853, a(9)=14834, a(10)=-133495. It seems that (-1)^(n-1)*a(n) > 0 for all n=3,4,5,...
I guess that a(2n) == (-1)^(n-1) (mod 4) and a(2n-1) == 2 (mod 4) for all n=1,2,3,... Perhaps a(2n-1) == 2 (mod 8) for every positive integer n. - Zhi-Wei Sun, Jul 18 2010
On August 5, 2010 Zhi-Wei Sun and Don Zagier proved that a(n) actually equals (-1)^(n-1)*D(n-1)+1, where D(0), D(1), D(2), ... are derangement numbers given by A000166. - Zhi-Wei Sun, Aug 07 2010

Crossrefs

Programs

  • Maple
    A179508:= n-> (-1)^n*(n!*add((-1)^(k)/k!, k=0..n))+1 : seq(A179508(n), n=0..21);
    # second program:
    G(x):=(2-x)*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0; seq((-1)^n*f[n], n=0..21); # Mélika Tebni, Jul 10 2021
  • Mathematica
    a[1] = 2;
    a[n_]:=a[n]=a[n-1]*(1-n)+n+1;
    Array[a, 30] (* Jon Maiga, Jul 10 2021 *)

Formula

a(n) = a(n-1)*(1-n)+n+1. - Jon Maiga, Jul 10 2021

A193274 a(n) = binomial(Bell(n), 2) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

0, 0, 1, 10, 105, 1326, 20503, 384126, 8567730, 223587231, 6725042325, 230228283165, 8877197732406, 382107434701266, 18221275474580181, 956287167902779240, 54916689705422813731, 3433293323775503064306, 232614384749689991763561, 17010440815323680947084096
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2011

Keywords

Crossrefs

Row sums of A193297.

Programs

  • Magma
    [Binomial(Bell(n),2): n in [0..20]]; // Vincenzo Librandi, Feb 17 2018
    
  • Maple
    a:= n-> binomial(combinat[bell](n), 2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 28 2011
  • Mathematica
    a[n_] := With[{b = BellB[n]}, b*(b-1)/2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 18 2014 *)
  • Python
    from itertools import accumulate, islice
    def A193274_gen(): # generator of terms
        yield 0
        blist, b = (1,), 1
        while True:
            blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b*(b-1)//2
    A193274_list = list(islice(A193274_gen(),30)) # Chai Wah Wu, Jun 22 2022

A205543 Logarithmic derivative of the Bell numbers (A000110).

Original entry on oeis.org

1, 3, 10, 39, 171, 822, 4271, 23759, 140518, 878883, 5789015, 40019058, 289513303, 2186421919, 17199606090, 140662816543, 1193865048363, 10499107480518, 95528651305671, 898071593401559, 8712429618413678, 87118795125708283, 896925422648691735
Offset: 1

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

a(n) = number of indecomposable partitions (A074664) of [n+3] in which n+3 lies in a doubleton block (see Link). - David Callan, Oct 08 2014

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 39*x^4/4 + 171*x^5/5 + 822*x^6/6 +...
where exponentiation yields the o.g.f. of the Bell numbers:
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 203*x^6 + 877*x^7 +...
which equals the series:
exp(L(x)) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) +...
		

Crossrefs

Cf. A000110.

Programs

  • PARI
    {a(n)=n*polcoeff(log(sum(m=0,n, x^m/prod(k=1,m, 1-k*x +x*O(x^n)))),n)}

Formula

L.g.f.: log( Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x) ).
Previous Showing 41-50 of 1370 results. Next