A285088
Numbers n such that the number of partitions of n(n+1)/2 (=A000041(A000217(n))) is prime.
Original entry on oeis.org
2, 3, 8, 3947, 43968, 61681
Offset: 1
a(3) = 8 is in the sequence because A000041(8*9/2) = 17977 is a prime.
-
for(n=1,2000,if(ispseudoprime(numbpart(n*(n+1)/2)),print1(n,", ")))
A346873
Triangle read by rows in which row n lists the row A000217(n) of A237591, n >= 1.
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 8, 3, 2, 1, 1, 11, 4, 3, 1, 1, 1, 15, 5, 3, 2, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3
Offset: 1
Triangle begins:
1;
2, 1;
4, 1, 1;
6, 2, 1, 1;
8, 3, 2, 1, 1;
11, 4, 3, 1, 1, 1;
15, 5, 3, 2, 1, 1, 1;
19, 6, 4, 2, 2, 1, 1, 1;
23, 8, 5, 2, 2, 2, 1, 1, 1;
28, 10, 5, 3, 3, 2, 1, 1, 1, 1;
34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1;
40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
...
Illustration of initial terms:
Column T gives the triangular numbers (A000217).
Column S gives A074285, the sum of the divisors of the triangular numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
n T S Diagram
-------------------------------------------------------------------------
_ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | | |
1 _ _|_| | | | | | | | | | |
2 3 4 |_ _| _ _| | | | | | | | | |
2 1| _| | | | | | | | |
_ _ _| _| _ _| | | | | | | |
3 6 12 |_ _ _ _| 1 | _ _| | | | | | |
4 1 _ _|_| | | | | | |
| _|1 _ _ _|_| | | | |
_ _ _ _ _| | 1 _ _| | | | | |
4 10 18 |_ _ _ _ _ _|2 | _| | | | |
6 _| _| _ _ _ _|_| | |
|_ _|1 1 | | | |
| 2 _| | | |
_ _ _ _ _ _ _ _|4 | _| _ _ _ _ _| |
3 15 24 |_ _ _ _ _ _ _ _| _ _|_| | _ _ _ _ _|
8 _ _| _|1 | |
|_ _ _|1 1 _ _| |
| 3 _ _| _ _|
|4 | _|
_ _ _ _ _ _ _ _ _ _ _| _| _|
4 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _ _| _|1 1
11 | _ _ _|2
| | 3
| |
| |5
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
5 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
15
.
A360010
First part of the n-th weakly decreasing triple of positive integers sorted lexicographically. Each n > 0 is repeated A000217(n) times.
Original entry on oeis.org
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8
Offset: 1
Triples begin: (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (3,3,3), ...
For pairs instead of triples we have
A002024.
The second instead of first part is
A194848.
The third instead of first part is
A333516.
Concatenating all the triples gives
A360240.
-
nn=9;First/@Select[Tuples[Range[nn],3],GreaterEqual@@#&]
-
from math import comb
from sympy import integer_nthroot
def A360010(n): return (m:=integer_nthroot(6*n,3)[0])+(n>comb(m+2,3)) # Chai Wah Wu, Nov 04 2024
A115364
a(n) = A000217(A001511(n)), where A001511 is one more than the 2-adic valuation of n, and A000217(n) is the n-th triangular number, binomial(n+1, 2).
Original entry on oeis.org
1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 21, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 28, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1
Offset: 1
Original entry on oeis.org
1, 3, 10, 15, 28, 45, 78, 105, 153, 190, 253, 300, 325, 435, 465, 528, 595, 630, 780, 903, 1128, 1275, 1830, 2145, 2415, 2485, 2628, 3160, 3403, 3570, 3655, 3828, 4095, 4753, 4950, 5050, 5253, 5460, 5995, 6105, 6670, 7503, 8515, 9180, 9453, 9730, 10440, 11175
Offset: 1
A130703
a(n) = smallest k such that A000217(n+1) = A000217(n) + (A000217(n) mod k), or 0 if no such k exists.
Original entry on oeis.org
0, 0, 0, 0, 9, 14, 10, 27, 35, 22, 18, 65, 77, 18, 26, 119, 27, 38, 34, 27, 209, 46, 28, 55, 299, 36, 35, 377, 45, 62, 58, 45, 527, 40, 54, 629, 95, 54, 74, 779, 63, 86, 82, 63, 989, 94, 54, 161, 235, 68, 91, 265, 81, 65, 106, 81, 145, 118, 90, 1769, 1829
Offset: 1
For n = 1 we have A000217(n) = 1, A000217(n+1) = 3; there is no k such that 3 - 1 = 2 = (1 mod k), hence a(1) = 0.
For n = 5 we have A000217(n) = 15, A000217(n+1) = 21; 9 is the smallest k such that 21 - 15 = 6 = (15 mod k), hence a(5) = 9.
For n = 22 we have A000217(n) = 253, A000217(n+1) = 276; 46 is the smallest k such that 276 - 253 = 23 = (253 mod k), hence a(22) = 46.
A210838
Coordinates (x,y) of the endpoint of a structure (or curve) formed by Q-toothpicks of size = 1..n. The inflection points are the n-th nodes if n is a triangular number A000217.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 0, 6, -4, 10, 1, 15, 7, 9, 14, 2, 22, 10, 13, 19, 3, 9, -8, -2, -20, 10, -7, 23, 7, 9, -8, -6, -24, -22, -7, -39, 11, -21, -8, -2, -28, -22, -7, -43, 15, -65, -8, -88, -32, -64, -7, -39, 19, -65, -8, -92, -36, -64, -65, -35, -95, -65, -64, -96
Offset: 0
-------------------------------------
Stage n also The end as
the size of Pair inflection
Q-toothpick (x y) point
-------------------------------------
. 0 0, 0, -
. 1 1, 1, Yes
. 2 3, 3, -
. 3 0, 6, Yes
. 4 -4, 10, -
. 5 1, 15, -
. 6 7, 9, Yes
. 7 14, 2, -
. 8 22, 10, -
. 9 13, 19, -
. 10 3, 9, Yes
. 11 -8, -2, -
. 12 -20, 10, -
. 13 -7, 23, -
. 14 7, 9, -
. 15 -8, -6, Yes
Cf.
A210841 (the same idea for primes).
-
A210838[nmax_]:=Module[{ep={0, 0}, angle=3/4Pi, turn=Pi/2, infl=0}, Join[{ep}, Table[If[n>1&&IntegerQ[Sqrt[8(n-1)+1]], infl++, If[Mod[infl, 2]==1, turn*=-1]; angle-=turn; infl=0]; ep=AngleVector[ep, {Sqrt[2]n, angle}], {n, nmax}]]];
A210838[100] (* Generates 101 coordinate pairs *) (* Paolo Xausa, Jan 12 2023 *)
-
A210838(nmax) = my(ep=vector(nmax+1), turn=1, infl=0, ep1, ep2); ep[1]=[0, 0]; if(nmax==0, return(ep)); ep[2]=[1, 1]; for(n=2, nmax, ep1=ep[n-1]; ep2=ep[n]; if(issquare((n-1)<<3+1), infl++; ep[n+1]=[ep2[1]+n*sign(ep2[1]-ep1[1]), ep2[2]+n*sign(ep2[2]-ep1[2])], if(infl%2, turn*=-1); infl=0; ep[n+1]=[ep2[1]-turn*n*sign(ep1[2]-ep2[2]), ep2[2]+turn*n*sign(ep1[1]-ep2[1])])); ep;
A210838(100) \\ Generates 101 coordinate pairs - Paolo Xausa, Jan 12 2023
-
from numpy import sign
from sympy import integer_nthroot
def A210838(nmax):
ep, turn, infl = [(0, 0), (1, 1)], 1, 0
for n in range(2, nmax + 1):
ep1, ep2 = ep[-2], ep[-1]
if integer_nthroot(((n - 1) << 3) + 1, 2)[1]: # Continue straight
infl += 1
dx = n * sign(ep2[0] - ep1[0])
dy = n * sign(ep2[1] - ep1[1])
else: # Turn
if infl % 2: turn *= -1
infl = 0
dx = turn * n * sign(ep2[1] - ep1[1])
dy = turn * n * sign(ep1[0] - ep2[0])
ep.append((ep2[0] + dx, ep2[1] + dy))
return ep[:nmax+1]
print(A210838(100)) # Generates 101 coordinate pairs - Paolo Xausa, Jan 12 2023
a(30)-a(33) corrected and more terms by
Paolo Xausa, Jan 12 2023
A212652
a(n) is the least positive integer M such that n = T(M) - T(k), for k an integer, 0 <= k <= M, where T(r) = A000217(r) is the r-th triangular number.
Original entry on oeis.org
1, 2, 2, 4, 3, 3, 4, 8, 4, 4, 6, 5, 7, 5, 5, 16, 9, 6, 10, 6, 6, 7, 12, 9, 7, 8, 7, 7, 15, 8, 16, 32, 8, 10, 8, 8, 19, 11, 9, 10, 21, 9, 22, 9, 9, 13, 24, 17, 10, 12, 11, 10, 27, 10, 10, 11, 12, 16, 30, 11, 31, 17, 11, 64, 11, 11, 34
Offset: 1
For n = 63, we have D(63) = {1,3,7,9,21,63}, B_63 = {11,12,13,22,32,63} and a(63) = min(11,12,13,22,32,63) = 11. Since A109814(63) = 9, T(11) - T(11-9) = T(11) - T(2) = 66 - 3 = 63.
-
f:= n -> min(map(t -> n/t + (t-1)/2,
numtheory:-divisors(n/2^padic:-ordp(n,2)))):
map(f, [$1..100]); # Robert Israel, Jan 14 2016
-
Table[Min[n/# + (# - 1)/2 &@ Select[Divisors@ n, OddQ]], {n, 67}] (* Michael De Vlieger, Dec 11 2015 *)
-
{ A212652(n) = my(m); m=2*n+1; fordiv(n/2^valuation(n,2), d, m=min(m,d+(2*n)\d)); (m-1)\2; } \\ Max Alekseyev, Mar 31 2008
A257293
Numbers n such that T(n) + T(n+1) + ... + T(n+12) is a square, where T = A000217 (triangular numbers).
Original entry on oeis.org
3, 29, 75, 432, 998, 3624, 8310, 44717, 102443, 370269, 848195, 4561352, 10448838, 37764464, 86508230, 465213837, 1065679683, 3851605709, 8822991915, 47447250672, 108688879478, 392826018504, 899858667750, 4839154355357, 11085200027723, 40064402282349
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,102,-102,0,0,-1,1).
-
I:=[3,29,75,432,998,3624,8310,44717,102443]; [n le 9 select I[n] else Self(n-1)+102*Self(n-4)-102*Self(n-5)-Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 05 2015
-
Select[Range[10^5],IntegerQ[Sqrt[(#^2+13*#+56)*13/2]]&] (* Ivan N. Ianakiev, May 04 2015 *)
LinearRecurrence[{1, 0, 0, 102, -102, 0, 0, -1, 1}, {3, 29, 75, 432, 998, 3624, 8310, 44717, 102443}, 50] (* Vincenzo Librandi, May 05 2015 *)
-
for(n=0,10^8,issquare(binomial(n+14,3)-binomial(n+1,3))&&print1(n","))
-
Vec(x*(3*x^8+7*x^7+6*x^6+26*x^5-260*x^4-357*x^3-46*x^2-26*x-3) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^100)) \\ Colin Barker, May 04 2015
A257711
Triangular numbers (A000217) that are the sum of seven consecutive triangular numbers.
Original entry on oeis.org
210, 3486, 51681, 883785, 13125126, 224476266, 3333728685, 57016086141, 846753959226, 14481861401910, 215072171913081, 3678335779997361, 54627484911961710, 934282806257926146, 13875166095466359621, 237304154453733242085, 3524237560763543380386
Offset: 1
210 is in the sequence because T(20) = 210 = 10+15+21+28+36+45+55 = T(4)+ ... +T(10).
-
LinearRecurrence[{1, 254, -254, -1, 1}, {210, 3486, 51681, 883785, 13125126}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
-
Vec(-21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))
Comments