cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A161130 Sum of the differences between the largest and the smallest fixed points over all non-derangement permutations of {1,2,...,n}.

Original entry on oeis.org

0, 0, 1, 2, 13, 74, 523, 4178, 37609, 376082, 4136911, 49642922, 645357997, 9035011946, 135525179203, 2168402867234, 36862848742993, 663531277373858, 12607094270103319, 252141885402066362, 5294979593443393621
Offset: 0

Views

Author

Emeric Deutsch, Jul 18 2009

Keywords

Examples

			a(3)=2 because the non-derangements of {1,2,3} are 1'23', 1'32, 213', and 32'1 with differences between the largest and smallest fixed points (marked) equal to 2, 0, 0, and 0, respectively.
a(4)=13 because the non-derangements of {1,2,3,4} are 1'234', 1'2'43, 1'423, 1'324', 1'342, 1'43'2, 413'2, 3124', 213'4', 42'13, 2314', 243'1, 42'3'1, 32'14', and 32'41 with differences between the largest and smallest fixed points (marked) equal to 3, 1, 0, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1, 2, and 0, respectively.
		

Crossrefs

Programs

  • Maple
    G := (exp(-x)*(1+x+x^2)-1)/(1-x)^2: Gser := series(G, x = 0, 25): seq(factorial(n)*coeff(Gser, x, n), n = 0 .. 22);
  • Mathematica
    CoefficientList[Series[(E^(-x)*(1+x+x^2)-1)/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

E.g.f.: (exp(-x) * (1+x+x^2) - 1) / (1-x)^2.
a(n) = A000166(n+1) - A155521(n).
a(n) = Sum(k*A161129(n,k), k=0..n-1).
Recurrence: (n-2)*a(n) = (n^2-2*n-1)*a(n-1) + (n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ n!*n*(3/e-1). - Vaclav Kotesovec, Oct 20 2012

A182390 a(0)=0, a(n) = (a(n-1) * n) XOR n.

Original entry on oeis.org

0, 1, 0, 3, 8, 45, 264, 1855, 14832, 133497, 1334960, 14684571, 176214856, 2290793125, 32071103752, 481066556279, 7697064900448, 130850103307633, 2355301859537376, 44750735331210163, 895014706624203240, 18795308839108268061, 413496794460381897320
Offset: 0

Views

Author

Alex Ratushnyak, Apr 27 2012

Keywords

Comments

For 0A000240(n-1).

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,BitXor[a(n+1),n+1]}; NestList[nxt,{0,0},30][[;;,2]] (* Harvey P. Dale, Mar 14 2023 *)
  • Python
    a=0
    for i in range(1,55):
        print(a, end=', ')
        a *= i
        a ^= i

Formula

a(0)=0, a(n) = (a(n-1) * n) XOR n, where XOR is the bitwise exclusive-OR operator.

A211229 Matrix inverse of lower triangular array A211226.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, -2, 1, -1, 1, 0, 0, -1, 1, 2, -3, 3, 0, 0, -3, 1, -2, 2, -3, 3, 0, 0, -1, 1, 9, -8, 8, -12, 6, 0, 0, -4, 1, -9, 9, -8, 8, -6, 6, 0, 0, -1, 1, 44, -45, 45, -40, 20, -30, 10, 0, 0, -5, 1, -44, 44, -45, 45, -20, 20, -10, 10, 0, 0, -1, 1
Offset: 0

Views

Author

Peter Bala, Apr 05 2012

Keywords

Comments

This triangle is related to the derangement numbers. The subtriangles (T(2*n,2*k))n,k>=0, -(T(2*n+1,2*k))n,k>=0, and (T(2*n+1,2*k+1))n,k>=0 are all equal to A008290, while the subtriangle (T(2*n,2*k+1))n,k>=0 equals -A180188 (with an extra initial row of zeros).

Examples

			Triangle begins:
   n\k |    0    1    2    3    4    5    6    7    8    9
  =====+==================================================
    0  |    1
    1  |   -1    1
    2  |    0   -1    1
    3  |    0    0   -1    1
    4  |    1    0    0   -2    1
    5  |   -1    1    0    0   -1    1
    6  |    2   -3    3    0    0   -3    1
    7  |   -2    2   -3    3    0    0   -1    1
    8  |    9   -8    8  -12    6    0    0   -4    1
    9  |   -9    9   -8    8   -6    6    0    0   -1    1
  ...
		

Crossrefs

Programs

  • Mathematica
    b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
    Table[(-1)^(n+k) (b[n]!/b[k]!) Sum[(-1)^i/i!, {i, 0, b[n-k]-h}], {n, 0, 31}, {k, 0, n}] //Flatten (* Manfred Boergens, Jan 10 2023 *)
    (* Sum-free code *)
    b[j_] = Floor[j/2]; h = If[EvenQ[n] && OddQ[k], 1, 0];
    T[n_, k_] = (-1)^(n+k) (b[n]!/b[k]!) If[n-k<2, 1, Round[(b[n-k]-h)!/E]/(b[n-k]-h)!];
    Table[T[n, k], {n, 0, 31}, {k, 0, n}] // Flatten
    (* Manfred Boergens, Jan 10 2023 *)
  • PARI
    f(n) = (n\2)!; \\ A081123
    T(n,k) = f(n)/(f(k)*f(n-k)); \\ A211226
    tabl(nn) = my(m=matrix(nn, nn, n, k, if (n>=k, T(n-1,k-1), 0))); 1/m; \\ Michel Marcus, Jan 10 2023

Formula

T(2*n,2*k) = T(2*n+1,2*k+1) = -T(2*n+1,2*k) = binomial(n,k)*A000166(n-k) = (n!/k!)*Sum_{i = 0..n-k} (-1)^i/i!;
T(2*n,2*k+1) = -n*binomial(n-1,k)*A000166(n-k-1) = -(n!/k!)*Sum_{i = 0..n-k-1} (-1)^i/i!.
T(n,k) = T(n-k,0)*A211226(n,k).
Column entries:
T(2*n,0) = A000166(n), T(2*n,2) = A000240(n), T(2*n,4) = A000387(n), T(2*n,6) = A000449(n), T(2*n,8) = A000475(n).
From Manfred Boergens, Jan 10 2023: (Start)
With b(j) = floor(j/2); h = 1 for n even and k odd, h = 0 else:
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*Sum_{i = 0..b(n-k)-h} (-1)^i/i!.
Sum-free formula:
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!) for n-k < 2.
T(n,k) = (-1)^(n+k)*(b(n)!/b(k)!)*round((b(n-k)-h)!/exp(1))/(b(n-k)-h)!) otherwise. (End)

Extensions

More terms from Manfred Boergens, Jan 10 2023

A235378 a(n) = (-1)^n*(n! - (-1)^n).

Original entry on oeis.org

-2, 1, -7, 23, -121, 719, -5041, 40319, -362881, 3628799, -39916801, 479001599, -6227020801, 87178291199, -1307674368001, 20922789887999, -355687428096001, 6402373705727999, -121645100408832001, 2432902008176639999, -51090942171709440001, 1124000727777607679999
Offset: 1

Views

Author

Jean-François Alcover, Jan 08 2014

Keywords

Comments

This sequence links rencontres numbers r(n) with Sum_{k>=1} 1/((k+n)*k!) = (a(n) + (-1)^(n+1)*e*r(n))/n.

Crossrefs

Cf. A000240.

Programs

  • Magma
    [(-1)^n*(Factorial(n) - (-1)^n): n in [1..30]]; // G. C. Greubel, Nov 21 2017
  • Mathematica
    r[n_] := n*Subfactorial[n-1]; a[n_] := n*Sum[1/((k + n)*k!), {k, 1, Infinity}] + (-1)^n*E*r[n]; Table[a[n], {n, 1, 25}]
    (* or, simply: *) Table[(-1)^n*(n!-(-1)^n), {n, 1, 25}]
    a[1]:=-2;a[n]:=(-1)^n*Sum[Abs[StirlingS1[n,j]+Binomial[n-1,j]],{j,0,n-1}];Flatten[Table[a[n],{n,1,19}]] (* Detlef Meya, Apr 11 2024 *)
  • PARI
    for(n=1, 30, print1((-1)^n*(n!-(-1)^n), ", ")) \\ G. C. Greubel, Nov 21 2017
    

Formula

Recurrence: a(1)=-2, a(2)=1; for n>2, a(n) = -n*a(n-1) - n - 1.
E.g.f.: 1/(1+x) - exp(x).
D-finite with recurrence: a(n) +(n-2)*a(n-1) +(-2*n+3)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Feb 24 2020
a(1) = -2; For a > 1: a(n) = (-1)^n*Sum_{j=0..n-1} (abs(Stirling1(n,j) + binomial(n - 1, j))). - Detlef Meya, Apr 11 2024

A318365 Expansion of e.g.f. exp(x*exp(-x)/(1 - x)).

Original entry on oeis.org

1, 1, 1, 4, 21, 116, 805, 6504, 59353, 608320, 6901641, 85824080, 1160786341, 16959401304, 266133942061, 4463567862376, 79669223849265, 1507610621184224, 30145968665822737, 635066714078714016, 14057275047440540221, 326159212986987669640, 7915118313077599105461, 200503241124736099689656
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(exp(x*exp(-x)/(1-x)),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x Exp[-x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k Subfactorial[k - 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
  • PARI
    x = 'x + O('x^25); Vec(serlaplace(exp(x*exp(-x)/(1 - x)))) \\ Michel Marcus, Aug 25 2018

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A000240(k)*binomial(n-1,k-1)*a(n-k).
a(n) ~ exp(exp(-1)/2 - 1/4 + 2*exp(-1/2)*sqrt(n) - n) * n^(n - 1/4) / sqrt(2). - Vaclav Kotesovec, Aug 25 2018

A331796 E.g.f.: (exp(x) - 1) * exp(1 - exp(x)) / (2 - exp(x)).

Original entry on oeis.org

0, 1, 1, 4, 27, 201, 1730, 17403, 200753, 2607034, 37614509, 596935373, 10334325760, 193820393781, 3914731176005, 84716449797164, 1955520065429447, 47960724916860501, 1245468600257306394, 34139796085144434199, 985066290121984334613
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2020

Keywords

Comments

Stirling transform of A000240.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;
         `if`(n=0, 0, n*(g(n-1)-(-1)^n))
        end:
    b:= proc(n, m) option remember; `if`(n=0,
          g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1) Exp[1 - Exp[x]]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    A000240[n_] := n! Sum[(-1)^k/k!, {k, 0, n - 1}]; a[n_] := Sum[StirlingS2[n, k] A000240[k], {k, 0, n}]; Table[a[n], {n, 0, 20}]
    Table[(1/2) Sum[Binomial[n, k] HurwitzLerchPhi[1/2, -k, 0] BellB[n - k, -1], {k, 1, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A000240(k).
a(n) = Sum_{k=1..n} binomial(n,k) * A000670(k) * A000587(n-k).
a(n) ~ n! * exp(-1) / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jan 26 2020

A335111 a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.

Original entry on oeis.org

0, 1, -2, 6, -8, 40, 48, 784, 5248, 49536, 490240, 5403904, 64822272, 842742784, 11798284288, 176974510080, 2831591636992, 48137058942976, 866467058614272, 16462874118651904, 329257482362552320, 6914407129635618816, 152116956851937476608, 3498690007594658430976
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2020

Keywords

Comments

Inverse binomial transform of A000240.

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
    nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ Michel Marcus, May 23 2020

Formula

G.f.: Sum_{k>=1} k! * x^k / (1 + 2*x)^(k + 1).
E.g.f.: x*exp(-2*x) / (1 - x).
a(n) = A000023(n) - A122803(n).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Jun 08 2022
a(n) = Sum_{k=0..n} (-1)^k * k * A008290(n,k). - Alois P. Heinz, May 20 2023

A348590 Number of endofunctions on [n] with exactly one isolated fixed point.

Original entry on oeis.org

0, 1, 0, 9, 68, 845, 12474, 218827, 4435864, 102030777, 2625176150, 74701061831, 2329237613988, 78972674630005, 2892636060014050, 113828236497224355, 4789121681108775344, 214528601554419809777, 10193616586275094959534, 512100888749268955942015
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2021

Keywords

Examples

			a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
		

Crossrefs

Column k=1 of A350212.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
          b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
         b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

Formula

a(n) mod 2 = A000035(n).

A156788 Triangle T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 4, 0, 3, 0, 27, 0, 8, 96, 0, 256, 0, 45, 640, 2430, 0, 3125, 0, 264, 8640, 29160, 61440, 0, 46656, 0, 1855, 118272, 688905, 1146880, 1640625, 0, 823543, 0, 14832, 1899520, 16166304, 41287680, 43750000, 47029248, 0, 16777216, 0, 133497, 34172928, 438143580, 1453326336, 2214843750, 1693052928, 1452729852, 0, 387420489
Offset: 0

Views

Author

Roger L. Bagula, Feb 15 2009

Keywords

Examples

			Triangle begins as:
  1;
  0,     1;
  0,     0,       4;
  0,     3,       0,       27;
  0,     8,      96,        0,      256;
  0,    45,     640,     2430,        0,     3125;
  0,   264,    8640,    29160,    61440,        0,    46656;
  0,  1855,  118272,   688905,  1146880,  1640625,        0, 823543;
  0, 14832, 1899520, 16166304, 41287680, 43750000, 47029248,      0, 16777216;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p.194.

Crossrefs

Programs

  • Mathematica
    A000166[n_]:= A000166[n]= If[n==0, 1, n*A000166[n-1] + (-1)^n];
    T[n_, k_]:= If[n==0, 1, Binomial[n, k]*A000166[n-k]*k^n];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 10 2021 *)
  • Sage
    def A000166(n): return 1 if (n==0) else n*A000166(n-1) + (-1)^n
    def A156788(n,k): return 1 if (n==0) else binomial(n,k)*k^n*A000166(n-k)
    flatten([[A156788(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021

Formula

T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1.
T(n, k) = binomial(n, k)*b(n-k)*k^n, where b(n) = n*b(n-1) + (-1)^n and b(0) = 1.
Sum_{k=0..n} T(n, k) = A137341(n).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = A000240(n).
T(n, n) = A000312(n). (End)

Extensions

Edited by G. C. Greubel, Jun 10 2021

A161129 Triangle read by rows: T(n,k) is the number of non-derangements of {1,2,...,n} for which the difference between the largest and smallest fixed points is k (n>=1; 0 <= k <= n-1).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 8, 3, 2, 2, 45, 8, 9, 8, 6, 264, 45, 44, 42, 36, 24, 1855, 264, 265, 256, 234, 192, 120, 14832, 1855, 1854, 1810, 1704, 1512, 1200, 720, 133497, 14832, 14833, 14568, 13950, 12864, 11160, 8640, 5040, 1334960, 133497, 133496, 131642, 127404
Offset: 1

Views

Author

Emeric Deutsch, Jul 18 2009

Keywords

Comments

Row sums give the number of non-derangement permutations of {1,2,...,n} (A002467).
T(n,0) = A000240(n) = number of permutations of {1,2,...,n} with exactly 1 fixed point.
T(n,1) = A000240(n-1).
T(n,2) = A000166(n-1) (the derangement numbers).
T(n,3) = A018934(n-1).
Sum_{k=0..n-1} k*T(n,k) = A161130(n).

Examples

			T(4,1)=3 because we have 1243, 4231, and 2134; T(4,2)=2 because we have 1432 and 3214; T(5,4)=6 because we have 1xyz5 where xyz is any permutation of 234.
Triangle starts:
    1;
    0,  1;
    3,  0,  1;
    8,  3,  0,  1;
   45,  8,  9,  8,  6;
  264, 45, 44, 42, 36, 24;
		

Crossrefs

Programs

  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k = 0 then n*d[n-1] elif k < n then (n-k)*(sum(binomial(k-1, j)*d[n-2-j], j = 0 .. k-1)) else 0 end if end proc: for n to 10 do seq(T(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form
  • Mathematica
    d = Subfactorial;
    T[n_, 0] := n*d[n - 1];
    T[n_, k_] := (n - k)*Sum[d[n - j - 2]*Binomial[k - 1, j], {j, 0, k - 1}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 28 2017 *)

Formula

T(n,0) = n*d(n-1); T(n,k) = (n-k)*Sum_{j=0..k-1}d(n-2-j)*binomial(k-1,j) for 1 <= k <= n-1, where d(i)=A000166(i) are the derangement numbers.
Previous Showing 21-30 of 36 results. Next