A113775
Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.
Original entry on oeis.org
1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0
-
nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
A193437
Expansion of e.g.f. exp( Sum_{n>=0} x^(3*n+1)/(3*n+1) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 931, 7441, 38017, 507241, 5864761, 43501591, 713059711, 10776989587, 105784464331, 2052437475361, 38263122487681, 469863736958161, 10518597616325617, 232980391759702951, 3446848352553524191, 87385257330831947851
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! + 931*x^7/7! +...
where
log(A(x)) = x + x^4/4 + x^7/7 + x^10/10 + x^13/13 + x^16/16 + x^19/19 +...
-
nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/3, 1, 4/3, x^3]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
-
{a(n)=n!*polcoeff( exp(sum(m=0,n,x^(3*m+1)/(3*m+1))+x*O(x^n)) ,n)}
A258830
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums.
Original entry on oeis.org
1, 1, 2, 5, 20, 87, 522, 3271, 26168, 214955, 2149550, 21881103, 262573236, 3191361201, 44679056814, 631546127049, 10104738032784, 162891774138339, 2932051934490102, 53094870211027831, 1061897404220556620, 21342730463672017301, 469540070200784380622
Offset: 0
p = 1432 is counted by a(4) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 2: 12, 21.
a(3) = 5: 123, 132, 213, 231, 312.
a(4) = 20: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4123, 4132, 4231.
-
b:= proc(u, o, c) option remember;
`if`(c<0, 0, `if`(u+o<=c, (u+o)!,
add(b(u-j, o-1+j, c+1), j=1..u)+
add(b(u+j-1, o-j, c-1), j=1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30);
-
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o <= c, (u + o)!,
Sum[b[u - j, o - 1 + j, c + 1], {j, 1, u}] +
Sum[b[u + j - 1, o - j, c - 1], {j, 1, o}]]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
A288953
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 10, 51, 280, 1995, 15120, 138075, 1330560, 14812875, 172972800, 2271359475, 31135104000, 471038042475, 7410154752000, 126906349444875, 2252687044608000, 43078308695296875, 851515702861824000, 17984171447178811875, 391697223316439040000
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o
| | | | |
o o o o o.
For n=0 the a(0)=1 solution is L.
For n=1 the a(1)=1 solution is L-o.
For n=2 the a(2)=3 solutions are
L-o-o L-o
|
o
2 + 1 solutions of this shape with pointers.
Cf.
A288954 (variation with additional initial sequence).
Cf.
A177145 (variation without final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
A321280
Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0
Triangle T(n,k) begins:
1;
1;
1;
1, 2;
1, 8;
1, 22, 22;
1, 52, 172;
1, 114, 856, 604;
1, 240, 3488, 7296;
1, 494, 12746, 54746, 31238;
1, 1004, 43628, 330068, 518324;
1, 2026, 143244, 1756878, 5300418, 2620708;
1, 4072, 457536, 8641800, 43235304, 55717312;
1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572;
1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160;
...
- Alois P. Heinz, Rows n = 0..100, flattened
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018.
- David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x,
add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+
add(b(u+j-1, o-j, c+1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))):
seq(T(n), n=0..14);
-
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)
A002867
a(n) = binomial(n,floor(n/2))*(n+1)!.
Original entry on oeis.org
1, 2, 12, 72, 720, 7200, 100800, 1411200, 25401600, 457228800, 10059033600, 221298739200, 5753767219200, 149597947699200, 4487938430976000, 134638152929280000, 4577697199595520000, 155641704786247680000, 5914384781877411840000, 224746621711341649920000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers.
-
Table[Binomial[n,Floor[n/2]](n+1)!,{n,0,20}] (* Harvey P. Dale, Sep 04 2018 *)
A053195
Number of level permutations of degree n.
Original entry on oeis.org
1, 1, 2, 3, 18, 45, 360, 1575, 20790, 99225, 1332450, 9823275, 181496700, 1404728325, 26221595400, 273922023375, 7196040101250, 69850115960625, 1662139682453250, 22561587455281875, 675158520854317500, 9002073394657468125, 259715927440434465000
Offset: 0
-
with(combinat):
b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*
b(n-i*j, i-2*p, p), j=0..n/i)))
end:
a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
)(iquo(n, 2^j))*2^j, 2^j), j=0..m)))(ilog2(n)):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 11 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*(i-1)!^j*b[n - i*j, i-2*p, p], {j, 0, n/i}]]]; a[n_] := Function[{m}, If[n == 0, 1, Sum[ b[n, Function [{h}, h - 1 + Mod[h, 2]][Quotient[n, 2^j]]*2^j, 2^j], {j, 0, m}]]][Log[2, n] // Floor]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 07 2015, after Alois P. Heinz *)
A092799
Denominator of partial products in an approximation to Pi/2.
Original entry on oeis.org
1, 3, 243, 215233605, 2849452841966467687734375, 34139907905802495953388390516678108673704867996275424957275390625
Offset: 1
The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
- J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270; arXiv:math/0506319 [math.NT], 2005-2006.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
-
for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(denominator(p), ", "))
A193438
Expansion of e.g.f. exp( Sum_{n>=0} x^(4*n+1)/(4*n+1) ).
Original entry on oeis.org
1, 1, 1, 1, 1, 25, 145, 505, 1345, 43345, 481825, 3027025, 13679425, 528618025, 8796735025, 81517983625, 529655946625, 23619691278625, 526089195906625, 6512769913326625, 55783484692170625, 2802281186570685625, 78369733286598300625, 1221751619270220585625
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 25*x^5/5! + 145*x^6/6! + 505*x^7/7! +...
where
log(A(x)) = x + x^5/5 + x^9/9 + x^13/13 + x^17/17 + x^21/21 + x^25/25 +...
-
nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/4, 1, 5/4, x^4]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
-
{a(n)=n!*polcoeff( exp(sum(m=0,n,x^(4*m+1)/(4*m+1))+x*O(x^n)) ,n)}
-
seq(n) = Vec(serlaplace(exp(intformal(1/(1-x^4) + O(x*x^n)) ))) \\ Andrew Howroyd, Oct 15 2023
A288954
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except before the first and after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 13, 79, 555, 4605, 42315, 436275, 4894155, 60125625, 794437875, 11325612375, 172141044075, 2793834368325, 48009995908875, 874143494098875, 16757439016192875, 338309837281040625, 7157757510792763875, 158706419654857449375, 3673441093896736036875
Offset: 2
Cf.
A288953 (variation without initial sequence).
Cf.
A177145 (variation without initial and final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
terms = 22; egf = 1/(3(1-z))(1/Sqrt[1-z^2] + (3z^3 - z^2 - 2z + 2)/((1-z)(1-z^2))) + O[z]^terms;
CoefficientList[egf, z] Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
Comments