cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A069726 Number of rooted planar bi-Eulerian maps with 2n edges. Bi-Eulerian: all its vertices and faces are of even valency.

Original entry on oeis.org

1, 1, 6, 54, 594, 7371, 99144, 1412802, 21025818, 323686935, 5120138790, 82812679560, 1364498150904, 22839100002036, 387477144862128, 6651170184185802, 115346229450879978, 2018559015390399615, 35610482089433479410, 632770874050702595670, 11317118106279639106530
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also counts rooted planar 3-constellations with n triangles: rooted planar maps with bicolored faces having n black triangular faces and an arbitrary number of white faces of degrees multiple to 3. - Valery A. Liskovets, Dec 01 2003

Crossrefs

Programs

  • Maple
    s := 4*(4-81*z)^(1/2): u := 36*I*z^(1/2): a := (s+u)^(1/3): b := (s-u)^(1/3):
    gf := 1 + ((b+a)*s + 108*I*z^(1/2)*(b-a) - 32*(9*z+1))/(432*z):
    simplify(series(gf, z, 22)): seq(coeff(%, z, n), n = 0..20);
    # Peter Luschny, May 19 2024
  • Mathematica
    Join[{1},Table[3^(n-1) Binomial[3n,n+1]/(n(2n+1)),{n,20}]] (* Harvey P. Dale, Oct 18 2013 *)
  • PARI
    A069726(n)=if(n,3^(n-1)*binomial(3*n,n+1)/n/(2*n+1),1)  \\ M. F. Hasler, Mar 26 2012

Formula

a(n) = 3^(n-1)*A000139(n).
a(0)=1, a(n) = 3^(n-1)*binomial(3n, n+1)/(n(2n+1)) for n >= 1.
G.f.: A(x) = (1 + 3*y - y^2)/3 where 3*x^2*y^3 - y + 1 = 0.
G.f. satisfies A(z) = 1 -47*z +3*z^2 +3*z*(22-9*z)*A(z) +9*z*(9*z-2)*A(z)^2 -81*z^2*A(z)^3.
a(n) ~ 2^(-2*n-1)*3^(4*n-1/2)/(sqrt(Pi)*n^(5/2)). - Ilya Gutkovskiy, Dec 04 2016
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -9*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 29 2023
G.f. 1/3 - 2/(27*z) + sqrt(4 - 81*z)*((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) + (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))/(54*z) - (((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) - (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))*i)/(2*sqrt(z)), where i = sqrt(-1). - Karol A. Penson, May 19 2024

Extensions

Entry revised by Editors of the OEIS, Mar 26 - 27 2012

A318104 Number of genus 4 rooted hypermaps with n darts.

Original entry on oeis.org

8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
Offset: 9

Views

Author

Gheorghe Coserea, Nov 12 2018

Keywords

Comments

Column k = 4 of A321710.
a(n) = 0 for n < 9. - N. J. A. Sloane, Dec 24 2018

Examples

			A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    y = (1 - Sqrt[1 - 8 x])/(4 x);
    gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
    Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
    };
    seq(17)

Formula

G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.

A069728 Number of rooted non-separable Eulerian planar maps with n edges.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 19, 64, 230, 865, 3364, 13443, 54938, 228749, 967628, 4149024, 18000758, 78905518, 349037335, 1556494270, 6991433386, 31609302688, 143755711433, 657301771172, 3020175361634, 13939605844996, 64604720622719
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Examples

			A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 19*x^6 + 64*x^7 + 230*x^8 + ...
		

Crossrefs

Cf. A000257.

Programs

  • Mathematica
    Flatten[{1, Table[(Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 1)*Binomial[j, k] * Binomial[2*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 2) * Binomial[j, k]*Binomial[2*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 30}]}] (* Vaclav Kotesovec, Apr 13 2018 *) (* In the article by Liskovets and Walsh, p. 218, E'ns(n), the factor -2*Sum[...] is missing. *)
  • PARI
    seq(N) = {
      my(x ='x+O('x^N), y=serreverse(x*(1+x/2-x^2/4)^2/(2*(1+x)^2)));
      Vec(1+y/2-y^2/4);
    };
    seq(27) \\ Gheorghe Coserea, Apr 12 2018

Formula

G.f.: y = A(x) satisfies 0 = y^5 - y^4 - 12*x*y^3 + x*(16*x + 11)*y^2 - 8*x^2*y + x^2. - Gheorghe Coserea, Apr 12 2018
a(n) ~ 75*sqrt(65)/(4394*sqrt(Pi)) * n^(-5/2) * (128/25)^n. - Gheorghe Coserea, and Vaclav Kotesovec, Apr 12 2018
A(x) = 1 + serreverse((1+x)^2*(1+12*x-(1-4*x)^(3/2))/(2*(4*x+3)^2)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y-1)*(y^2+y-1)^2/(y^3*(3*y-2)^2)), where y = A000108(x). - Gheorghe Coserea, Apr 14 2018

A085687 Expansion of g.f. 8/(1+sqrt(1-8*x))^3.

Original entry on oeis.org

1, 6, 36, 224, 1440, 9504, 64064, 439296, 3055104, 21498880, 152807424, 1095450624, 7911587840, 57511157760, 420459724800, 3089600348160, 22806128885760, 169033661153280, 1257467341701120, 9385880636620800, 70271680244613120, 527595313582571520
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2003

Keywords

Comments

a(n) is also the number of paths of length 2(n+1) in a binary tree between two vertices that are 2 steps apart. [David Koslicki (koslicki(AT)math.psu.edu), Nov 02 2010]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[8/(1 + Sqrt[1 - 8*x])^3, {x, 0, 21}], x] (* Amiram Eldar, Mar 24 2022 *)

Formula

a(n) = 6(n+1)*2^(n-2)*Cat(n+2)/(2n+3), where Cat(n)=A000108(n). - Ralf Stephan, Mar 11 2004
G.f.: c(2x)^3, where c(x) is the g.f. of A000108; a(n)=3(n+1)2^n*Cat(n+1)/(n+3); - Paul Barry, Dec 08 2004
a(n) = (n+1) * A000257(n+1). - F. Chapoton, Feb 26 2024
D-finite with recurrence: (n+3)*a(n) -2*(5*n+7)*a(n-1) +8*(2*n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 22/49 + 808*arcsin(1/(2*sqrt(2)))/(147*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 26/81 + 376*arcsinh(1/(2*sqrt(2)))/243. (End)

A090374 Number of rooted planar 4-constellations with n quadrangles: rooted planar maps with bicolored faces having n black quadrangular faces and an arbitrary number of white faces of degrees multiple to 4.

Original entry on oeis.org

1, 10, 160, 3200, 72960, 1813504, 47923200, 1325629440, 37991219200, 1120005652480, 33789432561664, 1039157228994560, 32480974549811200, 1029463445864448000, 33023079530417356800, 1070513886720329515008, 35026358912891580579840, 1155516042520241436098560
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Crossrefs

Programs

  • Maple
    A090374 := proc(n)
        5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2))
    end proc:
    seq(A090374(n),n=1..40) ; # R. J. Mathar, Mar 29 2023
  • Mathematica
    a[n_] := 5 2^(2n) (4n-1)! / ((n-1)! (3n+2)!);
    Array[a, 18] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    vector(20, n, 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2))) \\ Michel Marcus, Dec 11 2014

Formula

a(n) = 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2)). - corrected by Michel Marcus, Dec 11 2014
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -32*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 29 2023

Extensions

More terms from Michel Marcus, Dec 11 2014

A165546 Number of permutations of length n that avoid the patterns 3412 and 2413.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 395, 1823, 8741, 43193, 218704, 1129944, 5937728, 31656472, 170892498, 932625326, 5138618526, 28554124650, 159874462032, 901243508380, 5111776163584, 29155580007964, 167139065156182, 962618219420046
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {3>1, 3>4, 1>2, 4>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the third element is the largest and the second element is the smallest. - Sergey Kitaev, Dec 11 2020

Examples

			There are 22 permutations of length 4 that avoid these two patterns, so a(4)=22.
		

Crossrefs

Cf. A000257.

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = x^4*A[x]^3 + (5*x - 11)*x^2*A[x]^2 + (3*x + 10)*x*A[x] - 9*x + 1 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Jul 05 2024 *)

Formula

A(x*B(x)) = (B(x)-1)/(x*B(x)^2), where B(x) is the o.g.f. for A000257 and A(x) is the o.g.f. for A165546. This can be proven using the generating function equation at the end of section 3 of Miner and Pantone's paper. - Michael D. Weiner, Jul 02 2024
a(n) ~ 2^(5*n + 8) / (81 * sqrt(Pi) * n^(5/2) * 5^(n + 1/2)). - Vaclav Kotesovec, Jul 05 2024
G.f.: (x - F(x))/x^2, where F(x) is the compositional inverse of x*B(x) and B(x) is the o.g.f. for A000257. This follows from Michael Weiner's comment above. - Alexander Burstein, Aug 02 2024

Extensions

a(13)-a(14) (obtained by brute force enumeration) from Stephen DeSalvo, Sep 23 2015
a(15)-a(23) from David Bevan, Oct 03 2015
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015

A181282 a(n) is the number of associate Rota-Baxter words in one idempotent generator x and one idempotent operator P of degree n. Such words are Rota-Baxter words that begin and/or end with x, and P is applied n times in the word.

Original entry on oeis.org

1, 3, 12, 60, 336, 2016, 12672, 82368, 549120, 3734016, 25798656, 180590592, 1278025728, 9128755200, 65727037440, 476521021440, 3475800391680, 25489202872320, 187815179059200, 1389832325038080, 10324468700282880
Offset: 0

Views

Author

William Sit (wyscc(AT)sci.ccny.cuny.edu), Oct 11 2010

Keywords

Examples

			For n = 2, the a(2) = 12 associate Rota-Baxter words are: xP(xP(x)), xP(xP(x))x, P(xP(x))x, xP(P(x)x), xP(P(x)x)x, P(P(x)x)x, xP(xP(x)x), xP(xP(x)x)x, P(xP(x)x)x, xP(x)xP(x), xP(x)xP(x)x, P(x)xP(x)x.
		

Crossrefs

Programs

  • Magma
    [1] cat [3*2^(n-1)*Catalan(n): n in [1..40]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    CoefficientList[Series[(3-4x-3Sqrt[1-8x])/(8x), {x,0,40}], x]
    a[0] = 1; a[n_]:= 3*2^(n-1) CatalanNumber[n]; Table[a[n], {n,0,20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    a(n) = if(n==0, 1, 3*2^(n-1)*(binomial(2*n,n)/(n+1))); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f = math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A181282(n): return 1 if n==0 else 3*2**(n-1)*(C(2*n,n)/(n+1)) # Indranil Ghosh, Mar 05 2017
    
  • SageMath
    [3*2^(n-1)*catalan_number(n) -int(n==0)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

a(n) = 3*2^(n-1)*A000108(n).
G.f.: (3 - 4*t - 3*sqrt(1-8*t))/(8*t).
(n+1)*a(n) = 4*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012
a(n) = (n+2) * A000257(n). - F. Chapoton, Feb 26 2024

A298358 a(n) is the number of rooted 3-connected bicubic planar maps with 2n vertices.

Original entry on oeis.org

1, 0, 0, 1, 0, 3, 7, 15, 63, 168, 561, 1881, 6110, 21087, 72174, 250775, 883116, 3125910, 11174280, 40209852, 145590720, 530358095, 1941862860, 7144623447, 26403493545, 97971775008, 364903633215, 1363847131450, 5113975285788, 19233646581282
Offset: 1

Views

Author

Michael D. Weiner, Jan 17 2018

Keywords

Examples

			A(x) = x + x^4 + 3*x^6 + 7*x^7 + 15*x^8 + 63*x^9 + 168*x^10 + 561*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    kmax = 30; b[0] = 1; b[n_] := 3*2^(n - 1)*CatalanNumber[n]/(n + 2);
    G[x_] = Sum[b[k] x^k, {k, 0, kmax}];
    A[_] = 1;
    Do[A[x_] = G[x/(1 + A[x] + O[x]^k)^3] - 1 // Normal, {k, 1, kmax + 1}];
    CoefficientList[A[x], x][[2 ;; -2]] (* Jean-François Alcover, Jun 19 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x), g=(1+4*y-y^2)/4);
      Vec(subst(g-1, 'x, serreverse(x*g^3)));
    };
    seq(30) \\ Gheorghe Coserea, Apr 11 2018

Formula

G.f.: A(x) = G(x/(1+A(x))^3)-1 where A(x*(G(x))^3) = G(x)-1 and G(x) = g.f. for A000257.
From Gheorghe Coserea, Apr 16 2018: (Start)
y = A(x)/x satisfies: 0 = x^6*y^7 + 6*x^5*y^6 + 15*x^4*y^5 + 4*x^3*(5 - 3*x)*y^4 + x^2*(15 - 37*x)*y^3 + x*(16*x^2 - 39*x + 6)*y^2 + (24*x^2 - 15*x + 1)*y + (9*x - 1).
A(x) = serreverse((1+x)^3*(1 + 12*x - (1-4*x)^(3/2))/(2*(4*x+3)^2)); equivalently, it can be rewritten as A(x) = serreverse((y-1)*(y^2+y-1)^3/(y^5*(3*y-2)^2)), where y = A000108(x). (End)
a(n) ~ 3 * 2^(9*n-1) / (sqrt(Pi) * 17^(5/2) * 5^(3*n - 5/2) * n^(5/2)). - Gheorghe Coserea and Vaclav Kotesovec, Apr 16 2018

A003584 Unicursal (i.e., possessing an Eulerian path) planar rooted maps with n edges.

Original entry on oeis.org

1, 2, 9, 52, 336, 2304, 16368, 118976, 878592, 6562816, 49447424, 375072768, 2860343296, 21909012480, 168425533440, 1298753372160, 10041201131520, 77809145610240, 604138825973760, 4698956908462080, 36604934482821120
Offset: 0

Views

Author

Keywords

Comments

Unicursal (in a broad sense) means that no more than two vertices are of odd valency (that is maps possessing an Eulerian path or cycle).

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n-1)*(3*Binomial[2*n, n]/((n+1)*(n+2))+Binomial[2*n-1, n]); a[0]=1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 11 2014 *)

Formula

a(n) = A000257(n) + A069720(n).

Extensions

More terms from Valery A. Liskovets, Apr 07 2002

A101477 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to +-1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 2, 7, 12, 1, 2, 8, 31, 56, 1, 2, 8, 39, 156, 288, 1, 2, 8, 40, 211, 851, 1584, 1, 2, 8, 40, 223, 1219, 4909, 9152, 1, 2, 8, 40, 224, 1327, 7371, 29506, 54912, 1, 2, 8, 40, 224, 1343, 8250, 46099, 183043, 339456, 1, 2, 8, 40, 224, 1344, 8427, 52938, 295915, 1164387, 2149888
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Examples

			1, 1, 3, 12,  56,  288, 1584,  9152,  54912,  339456, ...
1, 2, 7, 31, 156,  851, 4909, 29506, 183043, 1164387, ...
1, 2, 8, 39, 211, 1219, 7371, 46099, 295915, 1939395, ...
1, 2, 8, 40, 223, 1327, 8250, 52938, 347941, 2330532, ...
1, 2, 8, 40, 224, 1343, 8427, 54625, 362833, 2456261, ...
1, 2, 8, 40, 224, 1344, 8447, 54887, 365688, 2484384, ...
1, 2, 8, 40, 224, 1344, 8448, 54911, 366051, 2488831, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366079, 2489311, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489343, ...
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, ...
		

Crossrefs

Rows converge to A052701. First row is A000257.

Programs

  • Mathematica
    nmax = 11;
    b[x_] = Sum[2^(n - 1)*(2*n - 2)!/(n - 1)!/n! x^n, {n, 1, nmax}];
    c[x_] = 0; Do[c[x_] = x*(1 + c[x])^4/(1 + c[x]^2) + O[x]^nmax, {nmax}];
    a[n_, t_] := a[n, t] = b[t]*(1 - c[t]^(n + 1))*(1 - c[t]^(n + 5))/((1 - c[t]^(n + 2))*(1 - c[t]^(n + 4)));
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+5))/[(1-C(t)^(k+2))*(1-C(t)^(k+4))], with tB(t) the g.f. of A052701 and C(t) the g.f. of A101478.
Previous Showing 11-20 of 25 results. Next