cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 869 results. Next

A140236 a(n) = A000292(A000292(n)).

Original entry on oeis.org

0, 1, 20, 220, 1540, 7770, 30856, 102340, 295240, 762355, 1798940, 3939936, 8104460, 15803060, 29426320, 52636760, 90889616, 152112005, 247574180, 392991060, 609896980, 927341646, 1383960600, 2030479100, 2932714200, 4175145975, 5865135276, 8137872120
Offset: 0

Views

Author

Artur Jasinski, May 14 2008

Keywords

Crossrefs

Row n=3 of A331436.
Cf. A000292.

Programs

  • Maple
    a:= (n-> binomial(n+2,3))@@2:
    seq(a(n), n=0..29);  # Alois P. Heinz, Mar 11 2024
  • Mathematica
    Table[(n (1 + n) (2 + n) (3 + n) (2 + n^2) (12 + n (1 + n) (2 + n)))/1296,{n,0,20}]
  • PARI
    b(n)=n*(n+1)*(n+2)/6;
    a(n)=b(b(n));
    vector(25,n,a(n-1)) \\ Joerg Arndt, Mar 11 2024

Formula

a(n) = (n*(1 + n)*(2 + n)*(3 + n)*(2 + n^2)*(12 + n*(1 + n)*(2 + n)))/1296.
G.f.: x*(1+10*x+65*x^2+120*x^3+80*x^4+4*x^5)/(1-x)^10. - Colin Barker, Apr 30 2012.

A118392 Denominator of sum of reciprocals of first n tetrahedral numbers A000292.

Original entry on oeis.org

1, 4, 20, 5, 7, 56, 24, 15, 55, 44, 52, 91, 35, 80, 272, 51, 57, 380, 140, 77, 253, 184, 200, 325, 117, 252, 812, 145, 155, 992, 352, 187, 595, 420, 444, 703, 247, 520, 1640, 287, 301, 1892, 660, 345, 1081, 752, 784, 1225, 425, 884, 2756, 477, 495, 3080
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Numerators are A118391.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 4 = denominator of 5/4 = 1/1 + 1/4.
a(3) = 20 = denominator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 5 = denominator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 7 = denominator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 77 = denominator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
		

Crossrefs

Programs

  • Magma
    [Denominator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118392:= n -> denom(3*n*(n+3)/(2*(n+1)*(n+2)));
    seq(A118392(n), n = 1..60); # G. C. Greubel, Feb 18 2021
  • Mathematica
    Accumulate[1/Binomial[Range[70]+2,3]]//Denominator (* Harvey P. Dale, Jun 07 2018 *)
  • PARI
    s=0;for(i=3,50,s+=1/binomial(i,3);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */
    
  • Sage
    [denominator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
    

Formula

A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).
A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).
A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).
a(n) = denominator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - G. C. Greubel, Feb 18 2021

Extensions

More terms from Harvey P. Dale, Jun 07 2018

A334581 Number of ways to choose 3 points that form an equilateral triangle from the A000292(n) points in a regular tetrahedral grid of side length n.

Original entry on oeis.org

0, 0, 4, 24, 84, 224, 516, 1068, 2016, 3528, 5832, 9256, 14208, 21180, 30728, 43488, 60192, 81660, 108828, 142764, 184708, 236088, 298476, 373652, 463524, 570228, 696012, 843312, 1014720, 1213096, 1441512, 1703352, 2002196, 2341848, 2726400, 3160272, 3648180
Offset: 0

Views

Author

Peter Kagey, May 06 2020

Keywords

Comments

a(n) >= 4 * A269747(n).
a(n) >= 4 * A000389(n+3) = A210569(n+2).
a(n) >= 4 * (n-1) + 4 * a(n-1) - 6 * a(n-2) + 4 * a(n-3) - a(n-4) for n >= 4.

Crossrefs

Cf. A000332 (equilateral triangles in triangular grid), A269747 (regular tetrahedra in a tetrahedral grid), A102698 (equilateral triangles in cube), A103158 (regular tetrahedra in cube).

A057884 A square array based on tetrahedral numbers (A000292) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 4, 1, 1, 0, 4, 2, 1, 10, 4, 5, 3, 1, 0, 10, 8, 7, 4, 1, 20, 10, 14, 13, 10, 5, 1, 0, 20, 20, 22, 20, 14, 6, 1, 35, 20, 30, 34, 35, 30, 19, 7, 1, 0, 35, 40, 50, 56, 55, 44, 25, 8, 1, 56, 35, 55, 70, 84, 91, 85, 63, 32, 9, 1, 0, 56, 70, 95, 120, 140, 146, 129, 88, 40, 10, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Examples

			Rows are (1,0,4,0,10,0,20,...), (1,1,4,4,10,10,20,...), (1,2,5,8,14,20,30,...), (1,3,7,13,22,34,50,...), (1,4,10,20,35,56,84,...) etc.
		

Crossrefs

Rows are A000292 with zeros, A058187 (A000292 with terms duplicated), A006918, A002623, A000292, A000330, A005900, A001845, A008412.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(4, 1)=4, T(0, 2n)=T(4, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^4.

A113067 Expansion of -x/((x^2+x+1)*(x^2+3*x+1)); invert transform gives signed version of tetrahedral numbers A000292.

Original entry on oeis.org

0, -1, 4, -11, 28, -72, 188, -493, 1292, -3383, 8856, -23184, 60696, -158905, 416020, -1089155, 2851444, -7465176, 19544084, -51167077, 133957148, -350704367, 918155952, -2403763488, 6293134512, -16475640049, 43133785636, -112925716859, 295643364940, -774004377960
Offset: 0

Views

Author

Creighton Dement, Oct 13 2005

Keywords

Comments

Invert(a(n)) gives (0, -1, 4, -10, 20, -35, ...) = A000292 (with alternating signs).
Binomial(a(n)) gives (0, -1, 2, -2, 4, -7, 10, ...) = A094686 (with alternating signs, from 2nd term).
Floretion Algebra Multiplication Program, FAMP Code: 2basei[C*F]; C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; F = + .5'i + .5'ii' + .5'ij' + .5'ik'

References

  • Creighton Dement, Floretion Integer Sequences (work in progress).

Crossrefs

Programs

  • Mathematica
    -x/((x^2+x+1)*(x^2+3*x+1)) + O[x]^30 // CoefficientList[#, x]& (* Jean-François Alcover, Jun 15 2017 *)
  • PARI
    concat(0, Vec(-x / ((1 + x + x^2)*(1 + 3*x + x^2)) + O(x^30))) \\ Colin Barker, May 11 2019
  • SageMath
    [((lucas_number1(n,3,1)-lucas_number1(n,1,1)))/(-2) for n in range(1,32)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) + a(n+1) + a(n+2) = (-1)^n *A001906(n+2) = (-1)^n*F(2n+4).
a(n) + 3*a(n+1) + 3*a(n+2) + a(n+3) = ((-1)^(n+1))*A109961(n+2).
(|a(n)|) = A290890(n) for n >= 0, this being the p-INVERT of (1,2,3,4,...), where p(S) = 1 - S^2. - Clark Kimberling, Aug 21 2017
a(n) = -4*a(n-1) - 5*a(n-2) - 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, May 11 2019
2*a(n) = (-1)^n*A001906(n+1) - A049347(n). - R. J. Mathar, Sep 20 2020

A185904 Multiplication table for the tetrahedral numbers (A000292), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 10, 16, 10, 20, 40, 40, 20, 35, 80, 100, 80, 35, 56, 140, 200, 200, 140, 56, 84, 224, 350, 400, 350, 224, 84, 120, 336, 560, 700, 700, 560, 336, 120, 165, 480, 840, 1120, 1225, 1120, 840, 480, 165, 220, 660, 1200, 1680, 1960, 1960, 1680, 1200, 660, 220, 286, 880, 1650, 2400, 2940, 3136, 2940, 2400, 1650, 880, 286, 364, 1144, 2200, 3300, 4200, 4704, 4704, 4200, 3300, 2200, 1144, 364, 455, 1456, 2860, 4400, 5775, 6720, 7056, 6720, 5775, 4400, 2860, 1456, 455, 560, 1820, 3640, 5720, 7700, 9240, 10080, 10080, 9240, 7700, 5720, 3640, 1820, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185906 < A000007 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,  4,  10,  20,  35
   4, 16,  40,  80, 140
  10, 40, 100, 200, 350
  20, 80, 200, 400, 700
		

Crossrefs

Row 1 = Column 1 = A000292.

Programs

  • Mathematica
    (* This program generates A098358 and its accumulation array, A185904. *)
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A098358 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185904 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185904 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1.

A080249 Stirling-like number triangle defined by the sequence A000292=C(n+3,3).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 15, 1, 1, 85, 171, 35, 1, 1, 341, 1795, 871, 70, 1, 1, 1365, 18291, 19215, 3321, 126, 1, 1, 5461, 184275, 402591, 135450, 10377, 210, 1, 1, 21845, 1848211, 8236095, 5143341, 716562, 28017, 330, 1, 1, 87381, 18503955, 166570111, 188253030, 45270813, 3069990, 67617, 495, 1
Offset: 0

Views

Author

Paul Barry, Feb 17 2003

Keywords

Comments

Columns include A002450, A016225. The defining sequence A000292=C(n+3,3) is the sequence of partial sums of the defining sequence for number triangle A080248.

Examples

			Triangle begins:
1;
1,    1;
1,    5,      1;
1,   21,     15,      1;
1,   85,    171,     35,      1;
1,  341,   1795,    871,     70,     1;
1, 1365,  18291,  19215,   3321,   126,   1;
1, 5461, 184275, 402591, 135450, 10377, 210, 1;
For example, 171 = 21+10*15, 35 = 15+20*1.
		

Crossrefs

Formula

T(n,k) = T(n-1,k-1) + A000292(k)*T(n-1,k). Columns are generated by 1/product{k=0..n, 1-C(k+3,3)*x}.

A127774 Triangle read by rows: row n consists of n-1 zeros followed by A000292(n).

Original entry on oeis.org

1, 0, 4, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 165, 0, 0, 0, 0, 0, 0, 0, 0, 0, 220, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

Essentially triangle T(n,k), read by rows, given by (0,0,0,0,0,0,0,...) DELTA (4,-3/2,5/6,-1/3,3/5,-1/10,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 14 2011

Examples

			First few rows of the triangle are:
  1;
  0,  4;
  0,  0, 10;
  0,  0,  0, 20;
  0,  0,  0,  0, 35;
  ...
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def A127774(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(a+1)*(a+2)//6 if is_square((n<<3)+1) else 0 # Chai Wah Wu, Jun 09 2025

Formula

G.f.: 1/((x*y-1)^4). - R. J. Mathar, Aug 12 2015

Extensions

More terms from Michel Marcus, Jun 10 2025

A147621 The 3rd Witt transform of A000292.

Original entry on oeis.org

0, 0, 0, 0, 4, 26, 120, 455, 1456, 4122, 10608, 25194, 55980, 117572, 235144, 450681, 832048, 1485800, 2575368, 4345965, 7158060, 11532402, 18209100, 28224105, 43008120, 64512240, 95365920, 139075245, 200268432, 284997384, 401107356
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2008

Keywords

Comments

The 2nd Witt transform is essentially in A032094.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[x^4(2*x^2 - x + 2)(2*x^4 - 2*x^3 + 9*x^2 - 2*x+2)/((1-x)^12 * (1 + x + x^2)^4), {x, 0, 40}],  x] (* Vincenzo Librandi  Dec 13 2012 *)
  • SageMath
    def A147621_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) ).list()
    A147621_list(40) # G. C. Greubel, Oct 24 2022

Formula

G.f.: x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4).
a(n) = (1/729)*(b(n) + c(n)), where b(n) = n*(n+3)*(n+6)*(3*n^8 +72*n^7 +618*n^6 + 2052*n^5 +207*n^4 -11772*n^3 -14268*n^2 +9648*n -232960)/492800 and c(n) = 9*A049347(n) +5*A049347(n-1) +9*(-1)^n*(A099254(n) -A099254(n-1)) -18(-1)^n*A128504(n) +27*(-1)^n*Sum_{k=0..n} A099254(n-k)*A099254(k-1). - G. C. Greubel, Oct 24 2022

A158824 Triangle T(n,k) = A000292(n) if k = 1 otherwise (k-1)*(n-k+1)*(n-k+2)/2, read by rows.

Original entry on oeis.org

1, 4, 1, 10, 3, 2, 20, 6, 6, 3, 35, 10, 12, 9, 4, 56, 15, 20, 18, 12, 5, 84, 21, 30, 30, 24, 15, 6, 120, 28, 42, 45, 40, 30, 18, 7, 165, 36, 56, 63, 60, 50, 36, 21, 8, 220, 45, 72, 84, 84, 75, 60, 42, 24, 9, 286, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 364, 66, 110, 135, 144, 140, 126, 105, 80, 54, 30, 11
Offset: 1

Views

Author

Keywords

Comments

The triangle can also be defined by multiplying the triangles A(n,k)=1 and A158823(n,k), that is, this here are the partial column sums of A158823.

Examples

			First few rows of the triangle are:
    1;
    4,  1;
   10,  3,   2;
   20,  6,   6,   3;
   35, 10,  12,   9,   4;
   56, 15,  20,  18,  12,   5;
   84, 21,  30,  30,  24,  15,   6;
  120, 28,  42,  45,  40,  30,  18,   7;
  165, 36,  56,  63,  60,  50,  36,  21,   8;
  220, 45,  72,  84,  84,  75,  60,  42,  24,  9;
  286, 55,  90, 108, 112, 105,  90,  70,  48, 27, 10;
  364, 66, 110, 135, 144, 140, 126, 105,  80, 54, 30, 11;
  455, 78, 132, 165, 180, 180, 168, 147, 120, 90, 60, 33, 12;
  ...
		

Crossrefs

Row sums: A000332.

Programs

  • Magma
    A158824:= func< n,k | k eq 1 select Binomial(n+2,3) else (k-1)*Binomial(n-k+2,2) >; [A158824(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    T[n_, k_]:= If[k==1, Binomial[n+2, 3], (k-1)*Binomial[n-k+2, 2]];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    def A158824(n,k): return binomial(n+2,3) if k==1 else (k-1)*binomial(n-k+2,2)
    flatten([[A158824(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021

Formula

T(n,k) = binomial(n+2,3) if k = 1 otherwise (k-1)*binomial(n-k+2, 2).
Sum_{k=1..n} T(n, k) = binomial(n+3, 4) = A000332(n+3). - G. C. Greubel, Apr 01 2021
Previous Showing 11-20 of 869 results. Next