cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 105 results. Next

A320169 Number of balanced enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 3, 6, 9, 20, 31, 70, 114, 243, 415, 961, 1603, 3564, 6559, 14913, 26630, 60037, 110160, 248859, 458445, 1001190, 1882350, 4220358, 7765303, 16822107, 32307240, 70081784, 133716083, 291788153, 561823990, 1230204229, 2396185727, 5176454708, 10220127290
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

An enriched p-tree of weight n is either the number n itself or a finite sequence of enriched p-trees whose weights are weakly decreasing and sum to n.
A tree is balanced if all leaves have the same height.

Examples

			The a(1) = 1 through a(6) = 20 balanced enriched p-trees:
  1  2     3      4           5            6
     (11)  (21)   (22)        (32)         (33)
           (111)  (31)        (41)         (42)
                  (211)       (221)        (51)
                  (1111)      (311)        (222)
                  ((11)(11))  (2111)       (321)
                              (11111)      (411)
                              ((21)(11))   (2211)
                              ((111)(11))  (3111)
                                           (21111)
                                           (111111)
                                           ((21)(21))
                                           ((22)(11))
                                           ((31)(11))
                                           ((111)(21))
                                           ((21)(111))
                                           ((211)(11))
                                           ((111)(111))
                                           ((1111)(11))
                                           ((11)(11)(11))
		

Crossrefs

Programs

  • Mathematica
    eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n];
    Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}]
  • PARI
    seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 26 2018

A330951 Number of singleton-reduced unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.

Examples

			The a(1) = 1 through a(6) = 11 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)
                ((oo))  ((ooo))   ((oooo))
                (o(o))  (o(oo))   (o(ooo))
                        (oo(o))   (oo(oo))
                        ((o(o)))  (ooo(o))
                                  ((o)(oo))
                                  ((o(oo)))
                                  ((oo(o)))
                                  (o((oo)))
                                  (o(o)(o))
                                  (o(o(o)))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A330943.
The series-reduced case is A001678.
Unlabeled rooted trees are counted by A000081.
Singleton-reduced phylogenetic trees are A000311.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020

Formula

G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - Andrew Howroyd, Dec 10 2020
a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - Vaclav Kotesovec, Nov 16 2021

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 10 2020

A005640 Number of phylogenetic trees with n labels.

Original entry on oeis.org

1, 1, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416, 2508985620606225641111552, 214348807882902869374926848, 19422044917978876510600167424
Offset: 0

Views

Author

Keywords

Comments

Each node of the tree is a subset of the labeled set {1,...,n}. If the subset node is empty, it must have degree at least 3.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.

Crossrefs

Programs

  • Mathematica
    a[n_ /; n > 2] := 2^(n-1)*(n-2)!*Sum[ Binomial[n+k-2, n-2]*Sum[ (-1)^j*Binomial[k, j]*Sum[ ((-1)^l*2^(j-l)*Binomial[j, l]*(j-l)!*StirlingS1[n+j-l-2, j-l])/(n+j-l-2)!, {l, 0, j}], {j, 1, k}], {k, 1, n-2}]; a[0] = a[1] = 1; a[2] = 2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 10 2012, after Vladimir Kruchinin *)

Formula

STIRLING transform of A005263.
E.g.f.: 1+B(x)-B(x)^2 where B(x) is e.g.f. of A005172.
For n >= 2, a(n) = 2^n*A006351(n) = 2^(n+1)*A000311(n).

Extensions

More terms, formula and comment from Christian G. Bower, Nov 15 1999

A319376 Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.

Original entry on oeis.org

1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Comments

Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,      4;
    5,    30,     51,      26;
   12,   146,    474,     576,     236;
   33,   719,   3950,    8572,    8060,   2752;
   90,  3590,  31464,  108416,  175380,  134136,   39208;
  261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
  ...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
  (111)    (112)    (123)
  (1(11))  (122)    (1(23))
           (1(12))  (2(13))
           (1(22))  (3(12))
           (2(11))
           (2(12))
(End)
		

Crossrefs

Columns k=1..2 are A000669, A319377.
Main diagonal is A000311.
Row sums are A316651.
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is A330465.
Lone-child-avoiding rooted trees are counted by A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319254(n,i).
Sum_{k=1..n} k * T(n,k) = A326396(n). - Alois P. Heinz, Sep 11 2019

A320155 Number of series-reduced balanced rooted trees with n labeled leaves.

Original entry on oeis.org

1, 1, 1, 4, 11, 41, 162, 1030, 7205, 55522, 442443, 3810852, 35272030, 351697516, 3735838550, 42719792640, 529195988635, 7128835815387, 103651381499810, 1610812109555323, 26489497655582729, 457497408108551450, 8248899117402701046, 154624472715479106919
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.

Examples

			The a(1) = 1 through a(5) = 11 rooted trees:
  1  (12)  (123)    (1234)      (12345)
                  ((12)(34))  ((12)(345))
                  ((13)(24))  ((13)(245))
                  ((14)(23))  ((14)(235))
                              ((15)(234))
                              ((23)(145))
                              ((24)(135))
                              ((25)(134))
                              ((34)(125))
                              ((35)(124))
                              ((45)(123))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[sps[Sort[labs]],Length[#1]>1&]}]];
    Table[Length[Select[phy2[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,7}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; while(u, v+=u; u=EulerT(u)-u); v}
    seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

Formula

E.g.f. A(x) satisfies A(x) = x + A(exp(x)-x-1). - Ira M. Gessel, Nov 17 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Oct 26 2018

A330471 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n.

Original entry on oeis.org

1, 1, 2, 9, 69, 623, 7803, 110476, 1907428
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2019

Keywords

Comments

A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part). This is a multiset generalization of singleton-reduced phylogenetic trees (A000311).

Examples

			The a(0) = 1 through a(3) = 9 trees:
  ()  (1)  (11)  (111)
           (12)  (112)
                 (123)
                 ((1)(11))
                 ((1)(12))
                 ((1)(23))
                 ((2)(11))
                 ((2)(13))
                 ((3)(12))
The a(4) = 69 trees, with singleton leaves (x) replaced by just x:
  (1111)      (1112)      (1122)      (1123)      (1234)
  (1(111))    (1(112))    (1(122))    (1(123))    (1(234))
  (11(11))    (11(12))    (11(22))    (11(23))    (12(34))
  ((11)(11))  (12(11))    (12(12))    (12(13))    (13(24))
  (1(1(11)))  (2(111))    (2(112))    (13(12))    (14(23))
              ((11)(12))  (22(11))    (2(113))    (2(134))
              (1(1(12)))  ((11)(22))  (23(11))    (23(14))
              (1(2(11)))  (1(1(22)))  (3(112))    (24(13))
              (2(1(11)))  ((12)(12))  ((11)(23))  (3(124))
                          (1(2(12)))  (1(1(23)))  (34(12))
                          (2(1(12)))  ((12)(13))  (4(123))
                          (2(2(11)))  (1(2(13)))  ((12)(34))
                                      (1(3(12)))  (1(2(34)))
                                      (2(1(13)))  ((13)(24))
                                      (2(3(11)))  (1(3(24)))
                                      (3(1(12)))  ((14)(23))
                                      (3(2(11)))  (1(4(23)))
                                                  (2(1(34)))
                                                  (2(3(14)))
                                                  (2(4(13)))
                                                  (3(1(24)))
                                                  (3(2(14)))
                                                  (3(4(12)))
                                                  (4(1(23)))
                                                  (4(2(13)))
                                                  (4(3(12)))
		

Crossrefs

The case with all atoms different is A000311.
The case with all atoms equal is A196545.
The orderless version is A316652.
The unlabeled version is A330470.
The case where the leaves are sets is A330628.
The version for just normal (not strongly normal) is A330654.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],Length[#]>1&&Length[#]
    				

A330628 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n whose leaves are sets (not necessarily disjoint).

Original entry on oeis.org

1, 1, 1, 5, 42, 423, 5458, 80926
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 42 trees:
  {{1}{1}{12}}    {{12}{12}}      {{1}{123}}      {1234}
  {{1}{{1}{12}}}  {{1}{2}{12}}    {{12}{13}}      {{1}{234}}
                  {{1}{{2}{12}}}  {{1}{1}{23}}    {{12}{34}}
                  {{2}{{1}{12}}}  {{1}{2}{13}}    {{13}{24}}
                                  {{1}{3}{12}}    {{14}{23}}
                                  {{1}{{1}{23}}}  {{2}{134}}
                                  {{1}{{2}{13}}}  {{3}{124}}
                                  {{1}{{3}{12}}}  {{4}{123}}
                                  {{2}{{1}{13}}}  {{1}{2}{34}}
                                  {{3}{{1}{12}}}  {{1}{3}{24}}
                                                  {{1}{4}{23}}
                                                  {{2}{3}{14}}
                                                  {{2}{4}{13}}
                                                  {{3}{4}{12}}
                                                  {{1}{{2}{34}}}
                                                  {{1}{{3}{24}}}
                                                  {{1}{{4}{23}}}
                                                  {{2}{{1}{34}}}
                                                  {{2}{{3}{14}}}
                                                  {{2}{{4}{13}}}
                                                  {{3}{{1}{24}}}
                                                  {{3}{{2}{14}}}
                                                  {{3}{{4}{12}}}
                                                  {{4}{{1}{23}}}
                                                  {{4}{{2}{13}}}
                                                  {{4}{{3}{12}}}
		

Crossrefs

The generalization where leaves are multisets is A330471.
The non-singleton-reduced version is A330625.
The unlabeled version is A330626.
The case with all atoms distinct is A000311.
Strongly normal multiset partitions are A035310.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
    Table[Sum[Length[Select[ssrtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]

A295281 Number of complete strict tree-factorizations of n > 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 4, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 0, 1, 4, 1, 1, 1, 4, 1, 6, 1, 1, 1, 1, 1, 4, 1, 1, 0, 1, 1, 9, 1, 1, 1, 1, 1, 9, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 19 2017

Keywords

Comments

A strict tree-factorization (see A295279 for definition) is complete if its leaves are all prime numbers.
From Andrew Howroyd, Nov 18 2018: (Start)
a(n) depends only on the prime signature of n.
This sequence is very similar but not identical to the number of complete orderless identity tree-factorizations of n. The first difference is at n=900 (square of three primes). Here a(n) = 191 whereas the other sequence would have 197. (End)

Examples

			The a(72) = 6 complete strict tree-factorizations are: 2*3*(2*(2*3)), 2*(2*3*(2*3)), 2*(2*(3*(2*3))), 2*(3*(2*(2*3))), 3*(2*(2*(2*3))), (2*3)*(2*(2*3)).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sftc[n_]:=Prepend[Join@@Function[fac,Tuples[sftc/@fac]]/@Select[postfacs[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Length[Select[sftc[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,2,100}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, v[j]+=w[k]*v[j/k])); w[2..n]} \\ Andrew Howroyd, Nov 18 2018

Formula

a(product of n distinct primes) = A000311(n).
Positions of zeros are proper prime powers A025475. Positions of nonzero entries are A085971.

A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts. A tree-partition is complete if the leaves are all multisets of length 1.

Examples

			The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
  (1(1(23)))
  (1(2(13)))
  (1(3(12)))
  (2(1(13)))
  (2(3(11)))
  (3(1(12)))
  (3(2(11)))
  ((11)(23))
  ((12)(13))
  (1(123))
  (2(113))
  (3(112))
  (11(23))
  (12(13))
  (13(12))
  (23(11))
  (1123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]

Formula

a(n) = A281119(A181821(n)).
a(prime(n)) = A196545(n)
a(2^n) = A000311(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A339780 Triangle read by rows: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves using exactly k colors.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 7, 9, 4, 0, 3, 24, 63, 68, 26, 0, 7, 91, 412, 812, 720, 236, 0, 13, 354, 2673, 8512, 13100, 9672, 2752, 0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208, 0, 73, 6504, 117365, 814184, 2782970, 5194580, 5408620, 2953792, 660032
Offset: 0

Views

Author

Andrew Howroyd, Dec 16 2020

Keywords

Comments

Homeomorphically irreducible trees are trees without vertices of degree 2. All non-leaf nodes then have degree >= 3.

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,    1;
  0,  1,    2,     1;
  0,  2,    7,     9,     4;
  0,  3,   24,    63,    68,     26;
  0,  7,   91,   412,   812,    720,    236;
  0, 13,  354,  2673,  8512,  13100,   9672,   2752;
  0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208;
  ...
		

Crossrefs

Columns k=1..4 are A007827(n>0), A339785, A339786, A339787.
Main diagonal is A000311(n>0).
Row sums are A339781.
Cf. A319376 (planted), A339650 (degree <= 3), A339779.

Programs

  • PARI
    \\ here U(n,k) is A339779 as vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)}
    M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
    { my(T=M(8)); for(n=1, #T~, print(T[n,1..n])); }
Previous Showing 51-60 of 105 results. Next