A123234
Number of n X n Latin squares up to row and column permutation (or "RC-equivalence").
Original entry on oeis.org
1, 1, 1, 4, 16, 1868, 2420400, 66915816462
Offset: 1
01234 => 20413 => 01234
13042 => 01234 => 14320
24310 => 32041 => 20413
30421 => 43102 => 32041
42103 => 14320 => 43102
The first square is transformed by permuting columns; the 2nd square is transformed by permuting rows.
Both the first and 3rd square are in reduced form, so are considered equivalent by row/col permutation.
- Dan R. Eilers, Phil A. Sallee, The number of Latin squares up to row and column permutation, Poster Session, Harvey Mudd College Mathematics Conference on Enumerative Combinatorics (2006) (for terms 1 to 7)
- Brendan D. McKay, private communication (2006) (for term 8)
A035483
Number of 2n X 2n symmetric matrices whose first row is 1..2n and whose rows and columns are all permutations of 1..2n.
Original entry on oeis.org
1, 1, 4, 456, 10936320, 130025295912960, 2209617218725251404267520
Offset: 0
A072377
Number of pairs of orthogonal Latin squares of order n.
Original entry on oeis.org
1, 0, 36, 3456, 3110400, 0, 3131834388480000, 32162058365970677760000, 19083454070548282639185346560000
Offset: 1
More terms (and corrected the degenerate first term) from
Ian Wanless, Dec 22 2015
A000528
Number of types of Latin squares of order n. Equivalently, number of nonisomorphic 1-factorizations of K_{n,n}.
Original entry on oeis.org
1, 1, 1, 2, 2, 17, 324, 842227, 57810418543, 104452188344901572, 6108088657705958932053657
Offset: 1
- CRC Handbook of Combinatorial Designs, 1996, p. 660.
- Denes and Keedwell, Latin Squares and Applications, Academic Press 1974.
a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009
A057997
Number of labeled loops (quasigroups with an identity element).
Original entry on oeis.org
1, 2, 3, 16, 280, 56448, 118594560, 4282251214848, 3398378138678329344, 75807214831601328114892800
Offset: 1
A211214
Number of reduced Latin n-dimensional hypercubes of order 4; labeled n-ary loops of order 4 with fixed identity.
Original entry on oeis.org
1, 1, 4, 64, 7132, 201538000, 432345572694417712, 3987683987354747642922773353963277968, 678469272874899582559986240285280710364867063489779510427038722229750276832
Offset: 0
- T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium, U.S. Patent US7228311B2 and Patent application 20040243621, Dec. 2, 2004.
- D. S. Krotov, V. N. Potapov, On the reconstruction of N-quasigroups of order 4 and the upper bounds on their numbers, Proc. Conference devoted to the 90th anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, October 8-11, 2001), 2001.
- D. S. Krotov, V. N. Potapov, n-Ary Quasigroups of Order 4, SIAM J. Discrete Math. 23:2 (2009), 561-570, arXiv: math/0701519.
- B. D. McKay, I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22:2 (2008) 719-736.
- V. N. Potapov, D. S. Krotov, On the number of n-ary quasigroups of finite order, Discrete Mathematics and Applications, 21:5-6 (2011), 575-586, arXiv:0912.5453.
A035482
Number of n X n symmetric matrices each of whose rows is a permutation of 1..n.
Original entry on oeis.org
1, 1, 2, 6, 96, 720, 328320, 31449600, 440952422400, 444733651353600, 471835793808949248000, 10070314878246926155776000, 1058410183156945383046388908032000, 614972203951464612786852376432607232000
Offset: 0
a(3) = 6 because the first row is arbitrary (say, 213) and the rest is then determined. By symmetry the second row has to be 132 or 123 but in order for the third row/column to work it has to be 132.
A238838
Number of 2n X 2n addition squares in which every digram (s,s;), s' != s, appears once horizontally and once vertically.
Original entry on oeis.org
2, 48, 5760, 5806080, 75246796800, 1780537083494400, 115939740156316876800, 19864514173849162481664000
Offset: 1
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
A351580
a(n) is the number of multisets of size n-1 consisting of permutations of n elements.
Original entry on oeis.org
1, 2, 21, 2600, 9078630, 1634935320144, 22831938997720867560, 34390564970975286088924022400, 7457911916650283082000186530740981347120, 300682790088737748950725540713718365319268411170195200, 2830053444386286847574443631356044745870287426798365860653876609636480
Offset: 1
Starting with the following men's ranking table of order 3, where row k represents man k's rankings, the 1 in the 2nd position of row 3 means that man #3 ranks woman #2 as his 1st choice.
213
321
213
Step 1: reorder columns so row 1 is in natural order:
123
231
123
Step 2: reorder rows 2 to n so rows are in lexical order:
123
123
231
a(3)=21 because there are 1+2+3+4+5+6 = 21 possibilities for the last two rows in lexical order, with 3!=6 possible permutations for each row.
The 21 tables for a(3) are the following:
123 123 123 123 123 123 123
123 123 123 123 123 123 132
123 132 213 231 312 321 132
.
123 123 123 123 123 123 123
132 132 132 132 213 213 213
213 231 312 321 213 231 312
.
123 123 123 123 123 123 123
213 231 231 231 312 312 321
321 231 312 321 312 321 321
Comments