A223357
T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.
Original entry on oeis.org
1, 4, 6, 16, 64, 36, 64, 768, 1024, 216, 256, 9216, 36864, 16384, 1296, 1024, 110592, 1327104, 1769472, 262144, 7776, 4096, 1327104, 48365568, 191102976, 84934656, 4194304, 46656, 16384, 15925248, 1764753408, 21177040896, 27518828544
Offset: 1
Some solutions for n=3 k=4
..0..2..0..2....0..3..5..2....0..2..5..4....0..4..0..4....0..1..3..4
..0..4..0..1....0..3..5..3....0..4..0..1....0..4..0..4....0..1..0..1
..0..4..5..4....0..1..0..1....0..4..2..1....0..2..0..1....0..1..2..4
Column 3 is 16*48^(n-1)
Column 4 is 64*144^(n-1)
Row 2 is 64*12^(n-2) for n>1
A225816
Square array A(n,k) = (k!)^n, n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 36, 8, 1, 1, 1, 120, 576, 216, 16, 1, 1, 1, 720, 14400, 13824, 1296, 32, 1, 1, 1, 5040, 518400, 1728000, 331776, 7776, 64, 1, 1, 1, 40320, 25401600, 373248000, 207360000, 7962624, 46656, 128, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 24, 120, ...
1, 1, 4, 36, 576, 14400, ...
1, 1, 8, 216, 13824, 1728000, ...
1, 1, 16, 1296, 331776, 207360000, ...
1, 1, 32, 7776, 7962624, 24883200000, ...
-
A:= (n, k)-> k!^n:
seq(seq(A(n,d-n), n=0..d), d=0..12);
A233155
T(n,k) = Number of n X k 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.
Original entry on oeis.org
3, 6, 9, 12, 24, 27, 24, 72, 96, 81, 48, 216, 432, 384, 243, 96, 648, 1944, 2592, 1536, 729, 192, 1944, 8856, 17496, 15552, 6144, 2187, 384, 5832, 40392, 121176, 157464, 93312, 24576, 6561, 768, 17496, 184248, 842616, 1658232, 1417176, 559872, 98304, 19683
Offset: 1
Some solutions for n=4, k=4
..1..2..2..1....1..2..2..1....0..0..0..0....1..2..1..0....2..1..0..1
..2..1..2..2....2..1..0..1....1..0..1..2....1..0..0..0....0..1..0..1
..2..1..2..1....2..1..0..1....1..0..1..0....0..0..1..0....2..1..2..1
..0..1..2..2....0..1..0..0....1..0..0..1....0..0..0..0....2..1..0..0
A240733
a(n) = floor(6^n/(2+2*cos(Pi/9))^n).
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 32, 50, 78, 121, 187, 289, 448, 693, 1072, 1658, 2564, 3966, 6134, 9487, 14673, 22695, 35101, 54288, 83964, 129862, 200850, 310643, 480452, 743085, 1149282, 1777523, 2749182, 4251987, 6576279, 10171116, 15731022, 24330178, 37629950
Offset: 0
-
A240733:=n->floor(6^n/(2+2*cos(Pi/9))^n); seq(A240733(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
-
Table[Floor[6^n/(2 + 2*Cos[Pi/9])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
-
{a(n)=floor(6^n/(2+2*cos(Pi/9))^n)}
for (n=0, 100, print1(a(n), ", "))
A240734
a(n) = floor(6^n/(2+sqrt(5))^n).
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 8, 11, 16, 22, 32, 46, 65, 92, 130, 185, 262, 371, 526, 745, 1056, 1496, 2119, 3001, 4251, 6021, 8528, 12080, 17110, 24236, 34328, 48622, 68869, 97547, 138166, 195700, 277191, 392616, 556104, 787670, 1115663, 1580234, 2238256, 3170284
Offset: 0
-
A240734:=n->floor(6^n/(2+sqrt(5))^n); seq(A240734(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
-
Table[Floor[6^n/(2 + Sqrt[5])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
-
{a(n)=floor(6^n/(2+sqrt(5))^n)}
for (n=0, 100, print1(a(n), ", "))
A240735
a(n) = floor(6^n/(3+sqrt(3))^n).
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 17, 21, 27, 35, 44, 56, 71, 90, 115, 146, 185, 235, 298, 378, 479, 607, 770, 977, 1238, 1570, 1991, 2525, 3202, 4060, 5148, 6527, 8276, 10494, 13306, 16872, 21393, 27125, 34393, 43609, 55294, 70111, 88897, 112717, 142919
Offset: 0
-
A240735:=n->floor(6^n/(3+sqrt(3))^n); seq(A240735(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
-
Table[Floor[6^n/(3 + Sqrt[3])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
-
{a(n)=floor(6^n/(3+sqrt(3))^n)}
for (n=0, 100, print1(a(n), ", "))
A339686
a(n) = Sum_{d|n} 6^(d-1).
Original entry on oeis.org
1, 7, 37, 223, 1297, 7819, 46657, 280159, 1679653, 10078999, 60466177, 362805091, 2176782337, 13060740679, 78364165429, 470185264735, 2821109907457, 16926661132171, 101559956668417, 609359750089711, 3656158440109669, 21936950700844039, 131621703842267137
Offset: 1
-
A339686:= func< n | (&+[6^(d-1): d in Divisors(n)]) >;
[A339686(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
Table[Sum[6^(d - 1), {d, Divisors[n]}], {n, 1, 23}]
nmax = 23; CoefficientList[Series[Sum[x^k/(1 - 6 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
a(n) = sumdiv(n, d, 6^(d-1)); \\ Michel Marcus, Dec 13 2020
-
def A339686(n): return sum(6^(k-1) for k in (1..n) if (k).divides(n))
[A339686(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
A056452
a(n) = 6^floor((n+1)/2).
Original entry on oeis.org
1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
[6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
A056452:=n->6^floor((n+1)/2);
-
Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
Table[6^Ceiling[n/2], {n,0,40}] (* or *)
LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)
A075501
Stirling2 triangle with scaled diagonals (powers of 6).
Original entry on oeis.org
1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1
[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 6 1
* 36 18 1
* 216 252 36 1
* 1296 3240 900 60 1
* 7776 40176 19440 2340 90 1
* 46656 489888 390096 75600 5040 126 1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
-
Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[6^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A128964
a(n) = (n^3-n)*6^n.
Original entry on oeis.org
0, 216, 5184, 77760, 933120, 9797760, 94058496, 846526464, 7255941120, 59861514240, 478892113920, 3735358488576, 28524555730944, 213934167982080, 1579821548175360, 11510128422420480, 82872924641427456, 590469588070170624, 4168020621671792640, 29176144351702548480
Offset: 1
-
[(n^3-n)*6^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
I:=[0, 216, 5184, 77760]; [n le 4 select I[n] else 24*Self(n-1) -216*Self(n-2) +864*Self(n-3) -1296*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
CoefficientList[Series[216 x/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)
Comments