cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 180 results. Next

A223357 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or antidiagonal neighbor moves across a corresponding cube edge.

Original entry on oeis.org

1, 4, 6, 16, 64, 36, 64, 768, 1024, 216, 256, 9216, 36864, 16384, 1296, 1024, 110592, 1327104, 1769472, 262144, 7776, 4096, 1327104, 48365568, 191102976, 84934656, 4194304, 46656, 16384, 15925248, 1764753408, 21177040896, 27518828544
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
....1.......4.........16............64..............256................1024
....6......64........768..........9216...........110592.............1327104
...36....1024......36864.......1327104.........48365568..........1764753408
..216...16384....1769472.....191102976......21177040896.......2356125106176
.1296..262144...84934656...27518828544....9273505480704....3147420753985536
.7776.4194304.4076863488.3962711310336.4060947412942848.4204783428144463872

Examples

			Some solutions for n=3 k=4
..0..2..0..2....0..3..5..2....0..2..5..4....0..4..0..4....0..1..3..4
..0..4..0..1....0..3..5..3....0..4..0..1....0..4..0..4....0..1..0..1
..0..4..5..4....0..1..0..1....0..4..2..1....0..2..0..1....0..1..2..4
		

Crossrefs

Column 1 is A000400(n-1)
Column 2 is A013709 (n-1)
Column 3 is 16*48^(n-1)
Column 4 is 64*144^(n-1)
Row 1 is A000302(n-1)
Row 2 is 64*12^(n-2) for n>1

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: a(n) = 48*a(n-1)
k=4: a(n) = 144*a(n-1)
k=5: a(n) = 480*a(n-1) -18432*a(n-2)
k=6: a(n) = 1600*a(n-1) -368640*a(n-2) +21233664*a(n-3)
k=7: a(n) = 5376*a(n-1) -5750784*a(n-2) +2038431744*a(n-3) -217432719360*a(n-4)
Empirical for row n:
n=1: a(n) = 4*a(n-1)
n=2: a(n) = 12*a(n-1) for n>2
n=3: a(n) = 40*a(n-1) -128*a(n-2) for n>4
n=4: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3) for n>7
n=5: [order 7] for n>11
n=6: [order 9] for n>15
n=7: [order 27] for n>33

A225816 Square array A(n,k) = (k!)^n, n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 36, 8, 1, 1, 1, 120, 576, 216, 16, 1, 1, 1, 720, 14400, 13824, 1296, 32, 1, 1, 1, 5040, 518400, 1728000, 331776, 7776, 64, 1, 1, 1, 40320, 25401600, 373248000, 207360000, 7962624, 46656, 128, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2013

Keywords

Comments

A(n,k) is the determinant of the k X k matrix M = [Stirling2(n+i,j)] for 1<=i,j<=k. A(2,3) = det([1,3,1; 1,7,6; 1,15,25]) = 36.
A(n,k) is the determinant of the symmetric k X k matrix M = [sigma_n(gcd(i,j))] for 1<=i,j<=k. A(2,3) = det([1,1,1; 1,5,1; 1,1,10]) = 36.
A(n,k) is (-1)^(n*k) times the determinant of the n X n matrix M = [Stirling1(k+i,j)] for 1<=i,j<=n. A(2,3) = (-1)^(2+3) * det([-6,11; 24,-50]) = 36.
A(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_k) we have abs(p_i-p_j) <= 1 for 1<=i,j<=k. A(2,3) = 36:
(1,2,2)-(1,1,2) (0,1,1)-(0,0,1)
/ X \ / X \
(2,2,2)-(2,1,2) (1,2,1)-(1,1,1)-(1,0,1) (0,1,0)-(0,0,0).
\ X / \ X /
(2,2,1) (2,1,1) (1,1,0) (1,0,0)
A(n,k) is the number of set partitions of [k*(n+1)] into k blocks of size n+1 such that the elements of each block are distinct mod n+1. A(2,3) = 36: 123|456|789, 126|345|789, ..., 189|234|567, 189|246|357.

Examples

			Square array A(n,k) begins:
  1, 1,  1,    1,       1,           1, ...
  1, 1,  2,    6,      24,         120, ...
  1, 1,  4,   36,     576,       14400, ...
  1, 1,  8,  216,   13824,     1728000, ...
  1, 1, 16, 1296,  331776,   207360000, ...
  1, 1, 32, 7776, 7962624, 24883200000, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A000079, A000400, A009968.
Rows n=0-4 give: A000012, A000142, A001044, A000442, A134375.
Main diagonal gives: A036740.

Programs

  • Maple
    A:= (n, k)-> k!^n:
    seq(seq(A(n,d-n), n=0..d), d=0..12);

Formula

A(n,k) = (k!)^n.
A(n,k) = k^n * A(n,k-1) for k>0, A(n,0) = 1.
A(n,k) = k! * A(n-1,k) for n>0, A(0,k) = 1.
G.f. of column k: 1/(1-k!*x).

A233155 T(n,k) = Number of n X k 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

3, 6, 9, 12, 24, 27, 24, 72, 96, 81, 48, 216, 432, 384, 243, 96, 648, 1944, 2592, 1536, 729, 192, 1944, 8856, 17496, 15552, 6144, 2187, 384, 5832, 40392, 121176, 157464, 93312, 24576, 6561, 768, 17496, 184248, 842616, 1658232, 1417176, 559872, 98304, 19683
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Table starts
.....3.......6........12.........24...........48.............96
.....9......24........72........216..........648...........1944
....27......96.......432.......1944.........8856..........40392
....81.....384......2592......17496.......121176.........842616
...243....1536.....15552.....157464......1658232.......17587584
...729....6144.....93312....1417176.....22692312......367125912
..2187...24576....559872...12754584....310536504.....7663517136
..6561...98304...3359232..114791256...4249585944...159971190624
.19683..393216..20155392.1033121304..58154132088..3339300422232
.59049.1572864.120932352.9298091736.795819434328.69705848287656

Examples

			Some solutions for n=4, k=4
..1..2..2..1....1..2..2..1....0..0..0..0....1..2..1..0....2..1..0..1
..2..1..2..2....2..1..0..1....1..0..1..2....1..0..0..0....0..1..0..1
..2..1..2..1....2..1..0..1....1..0..1..0....0..0..1..0....2..1..2..1
..0..1..2..2....0..1..0..0....1..0..0..1....0..0..0..0....2..1..0..0
		

Crossrefs

Column 1 is A000244.
Column 2 is A002023(n-1).
Column 3 is 2*A000400.
Column 4 is 3*A055275.
Row 1 is A003945.
Row 2 is A005051(n-1) for n>1.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 4*a(n-1).
k=3: a(n) = 6*a(n-1).
k=4: a(n) = 9*a(n-1).
k=5: a(n) = 15*a(n-1) -18*a(n-2).
k=6: a(n) = 25*a(n-1) -90*a(n-2) +81*a(n-3).
k=7: a(n) = 42*a(n-1) -351*a(n-2) +972*a(n-3) -810*a(n-4).
Empirical for row n:
n=1: a(n) = 2*a(n-1).
n=2: a(n) = 3*a(n-1) for n>2.
n=3: a(n) = 5*a(n-1) -2*a(n-2) for n>4.
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3) for n>7.
n=5: [order 7] for n>11.
n=6: [order 9] for n>15.
n=7: [order 27] for n>33.

A240733 a(n) = floor(6^n/(2+2*cos(Pi/9))^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 32, 50, 78, 121, 187, 289, 448, 693, 1072, 1658, 2564, 3966, 6134, 9487, 14673, 22695, 35101, 54288, 83964, 129862, 200850, 310643, 480452, 743085, 1149282, 1777523, 2749182, 4251987, 6576279, 10171116, 15731022, 24330178, 37629950
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 11 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a nonaflake after n iterations, let a(0) = 1. The total number of sides is 9*A000400(n). The total number of holes is A002452(n). 2*cos(Pi/9) = 1.87938524... = diagonal b of nonagon (see comments in A123609).

Crossrefs

Cf. A000400, A002452, A123609, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240733:=n->floor(6^n/(2+2*cos(Pi/9))^n); seq(A240733(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[6^n/(2 + 2*Cos[Pi/9])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(6^n/(2+2*cos(Pi/9))^n)}
           for (n=0, 100, print1(a(n), ", "))

A240734 a(n) = floor(6^n/(2+sqrt(5))^n).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 11, 16, 22, 32, 46, 65, 92, 130, 185, 262, 371, 526, 745, 1056, 1496, 2119, 3001, 4251, 6021, 8528, 12080, 17110, 24236, 34328, 48622, 68869, 97547, 138166, 195700, 277191, 392616, 556104, 787670, 1115663, 1580234, 2238256, 3170284
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 11 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a decaflake after n iterations, let a(0) = 1. The total number of sides is 10*A000400(n). The total number of holes is A002275(n). 2 + sqrt(5) = A098317.

Crossrefs

Cf. A000400, A002275, A098317, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240734:=n->floor(6^n/(2+sqrt(5))^n); seq(A240734(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[6^n/(2 + Sqrt[5])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(6^n/(2+sqrt(5))^n)}
           for (n=0, 100, print1(a(n), ", "))

A240735 a(n) = floor(6^n/(3+sqrt(3))^n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 17, 21, 27, 35, 44, 56, 71, 90, 115, 146, 185, 235, 298, 378, 479, 607, 770, 977, 1238, 1570, 1991, 2525, 3202, 4060, 5148, 6527, 8276, 10494, 13306, 16872, 21393, 27125, 34393, 43609, 55294, 70111, 88897, 112717, 142919
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 11 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a dodecaflake after n iterations, let a(0) = 1. The total number of sides is 12*A000400(n). The total number of holes is A240846. 3 + sqrt(3) = A165663.

Crossrefs

Cf. A000400, A240846, A165663, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240735:=n->floor(6^n/(3+sqrt(3))^n); seq(A240735(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[6^n/(3 + Sqrt[3])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(6^n/(3+sqrt(3))^n)}
           for (n=0, 100, print1(a(n), ", "))

A339686 a(n) = Sum_{d|n} 6^(d-1).

Original entry on oeis.org

1, 7, 37, 223, 1297, 7819, 46657, 280159, 1679653, 10078999, 60466177, 362805091, 2176782337, 13060740679, 78364165429, 470185264735, 2821109907457, 16926661132171, 101559956668417, 609359750089711, 3656158440109669, 21936950700844039, 131621703842267137
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 6 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), this sequence (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339686:= func< n | (&+[6^(d-1): d in Divisors(n)]) >;
    [A339686(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[6^(d - 1), {d, Divisors[n]}], {n, 1, 23}]
    nmax = 23; CoefficientList[Series[Sum[x^k/(1 - 6 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 6^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339686(n): return sum(6^(k-1) for k in (1..n) if (k).divides(n))
    [A339686(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 6*x^k).
G.f.: Sum_{k>=1} 6^(k-1) * x^k / (1 - x^k).
a(n) ~ 6^(n-1). - Vaclav Kotesovec, Jun 05 2021

A056452 a(n) = 6^floor((n+1)/2).

Original entry on oeis.org

1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of length n using up to six different colors. For a(3) = 36, the rows are AAA, ABA, ACA, ADA, AEA, AFA, BAB, BBB, BCB, BDB, BEB, BFB, CAC, CBC, CCC, CDC, CEC, CFC, DAD, DBD, DCD, DDD, DED, DFD, EAE, EBE, ECE, EDE, EEE, EFE, FAF, FBF, FCF, FDF, FEF, and FFF. - Robert A. Russell, Nov 08 2018
Also: a(n) is the number of palindromes with n digits using a maximum of six different symbols. - David A. Corneth, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=6 of A321391.
Cf. A016116.
Cf. A000400 (oriented), A056308 (unoriented), A320524 (chiral).

Programs

  • Magma
    [6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
  • Maple
    A056452:=n->6^floor((n+1)/2);
  • Mathematica
    Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
    Table[6^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)

Formula

a(n) = 6^floor((n+1)/2).
a(n) = 6*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+6*x) / (1-6*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 08 2018]
a(n) = C(6,0)*A000007(n) + C(6,1)*A057427(n) + C(6,2)*A056453(n) + C(6,3)*A056454(n) + C(6,4)*A056455(n) + C(6,5)*A056456(n) + C(6,6)*A056457(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 08 2018
Name corrected by David A. Corneth, Nov 08 2018

A075501 Stirling2 triangle with scaled diagonals (powers of 6).

Original entry on oeis.org

1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(6*z) - 1)*x/6) - 1.

Examples

			[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*      1
*      6       1
*     36      18       1
*    216     252      36       1
*   1296    3240     900      60      1
*   7776   40176   19440    2340     90    1
*  46656  489888  390096   75600   5040  126   1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
		

Crossrefs

Columns 1-7 are A000400, A016175, A075916-A075920. Row sums are A005012.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[6^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (6^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*6)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 6m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-6k*x), m >= 1.
E.g.f. for m-th column: (((exp(6x)-1)/6)^m)/m!, m >= 1.

A128964 a(n) = (n^3-n)*6^n.

Original entry on oeis.org

0, 216, 5184, 77760, 933120, 9797760, 94058496, 846526464, 7255941120, 59861514240, 478892113920, 3735358488576, 28524555730944, 213934167982080, 1579821548175360, 11510128422420480, 82872924641427456, 590469588070170624, 4168020621671792640, 29176144351702548480
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*6^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 216, 5184, 77760]; [n le 4 select I[n] else 24*Self(n-1) -216*Self(n-2) +864*Self(n-3) -1296*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    CoefficientList[Series[216 x/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 216*x^2/(1-6*x)^4.
a(n) = 216*A081144(n+1). (End)
a(n) = 24*a(n-1) - 216*a(n-2) + 864*a(n-3) - 1296*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=2} 1/a(n) = 25*log(6/5)/12 - 3/8.
Sum_{n>=2} (-1)^n/a(n) = 49*log(7/6)/12 - 5/8. (End)
a(n) = A007531(n+1)*A000400(n). - Amiram Eldar, Oct 02 2022

Extensions

Corrected offset. - Mohammad K. Azarian, Nov 20 2008
Previous Showing 51-60 of 180 results. Next