cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A064073 Generalized tangent number d(8,n).

Original entry on oeis.org

8, 1408, 739328, 806453248, 1506300919808, 4297849713983488, 17390688314209599488, 94727563504456856240128, 668321603392783694711226368, 5928595592752632717848942215168, 64586438563324327821773422563688448, 847680268223550650928681687352090820608
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2001

Keywords

Crossrefs

Programs

  • Maple
    egf := sec(8*x)*2*sin(4*x): ser := series(egf, x, 24):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..10); # Peter Luschny, Nov 21 2021

Formula

E.g.f.: Sum_{k>0} a(k)x^(2k-1)/(2k-1)! = 2*sin(4x)/cos(8x).
a(n) = 2^(4n-1) * A000464(n-1).
a(n) = (2*n-1)!*[x^(2*n-1)](sec(8*x)*2*sin(4*x)). - Peter Luschny, Nov 21 2021

A161722 Generalized Bernoulli numbers B_n(X,0), X a Dirichlet character modulus 8.

Original entry on oeis.org

0, 2, -44, 2166, -196888, 28730410, -6148123332, 1813990148894, -705775346640176, 350112935442888018, -215681051222514096220, 161537815119247080938182, -144555133640020128085896264, 152323571317104251881943249786
Offset: 0

Views

Author

Peter Bala, Jun 18 2009

Keywords

Comments

Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)-1) * Sum_{r = 0..m-1} X(r)*exp(r*t) = Sum_{n >= 0} B_n(X,x)*t^n/n!.
The values B_n(X,0) are generalizations of the Bernoulli numbers (case X = 1). For the theory and properties of these polynomials and numbers see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0.
The odd-indexed generalized Bernoulli numbers B_(2*n+1)(X,0) vanish. The current sequence lists the even-indexed values B_(2*n)(X,0).
The coefficients of the generalized Bernoulli polynomials B_n(X,x) are listed in A151751.

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.

Crossrefs

Programs

  • Maple
    G := x*sinh(x)/cosh(2*x): ser := series(G, x, 30):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..14); # Peter Luschny, Nov 26 2020
    # After an observation of F. Chapoton in A117442:
    A161722 := proc(n) 4^n*add(binomial(2*n, k)*euler(k)*((x+1)/2)^(2*n-k), k=0..2*n);
    coeff(%, x, 1) end: seq(A161722(n), n=0..13); # Peter Luschny, Nov 26 2020
  • Mathematica
    terms = 13;
    (CoefficientList[x(Sinh[x]/Cosh[2x]) + O[x]^(2terms+3), x] Range[0, 2terms+2]!)[[ ;; ;; 2]] (* Jean-François Alcover, Nov 16 2020 *)

Formula

(1)... a(n) = (-1)^(n+1)*2*n*A000464(n-1).
The sequence of generalized Bernoulli numbers
(2)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...]
has the e.g.f.
(3)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1),
which simplifies to
(4)... t*sinh(t)/cosh(2*t) = 2*t^2/2! - 44*t^4/4! + ....
Hence
(5)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1) and B_(2*n+1)(X,0) = 0.
a(n) = (-1/2)*16^n*n*euler(2*n-1, 1/4) for n >= 1 after a formula of Peter Bala in A000464. - Peter Luschny, Nov 26 2020

Extensions

Cross-reference corrected by Peter Bala, Jun 22 2009
Offset set to 0 and a(0) = 0 prepended by Peter Luschny, Nov 26 2020

A000822 Expansion of (sin^2 x + sin x) /cos 2x.

Original entry on oeis.org

0, 1, 2, 11, 40, 361, 1952, 24611, 177280, 2873041, 25866752, 512343611, 5535262720, 129570724921, 1633165156352, 44110959165011, 635421069967360, 19450718635716001, 315212388819402752, 10784052561125704811
Offset: 0

Views

Author

Keywords

Crossrefs

Bisections are A000464 and A000816.

A098432 Coefficients of polynomials S(n,x) related to Springer numbers.

Original entry on oeis.org

1, 8, 7, 128, 304, 177, 3072, 13952, 21080, 10199, 98304, 724992, 2016000, 2441056, 1051745, 3932160, 42762240, 187643904, 407505664, 428605352, 169913511, 188743680, 2839019520, 17974591488, 60428242944, 111985428352
Offset: 0

Views

Author

Ralf Stephan, Sep 07 2004

Keywords

Examples

			S(0,x) = 1,
S(1,x) = 8*x + 7,
S(2,x) = 128*x^2 + 304*x + 177,
S(3,x) = 3072*x^3 + 13952*x^2 + 21080*x + 10199.
		

Crossrefs

Cf. A001586. S(n, 1/2) = A000464(n+1), S(n, -1/2) = A000281(n).
Leading coefficients are A051189. Constant terms are in A098433.
Cf. A001586. S(n, 1/2) = A000464(n), S(n, -1/2) = A000281(n).

Programs

  • PARI
    S(n,x)=if(n<1,1,(2*x+2)*(2*x+4)*S(n-1,x+2)-(2*x+1)^2*S(n-1,x))

Formula

Recurrence: S(0, x)=1, S(n, x)=(2x+2)(2x+4)S(n-1, x+2)-(2x+1)^2S(n-1, x).
G.f.: Sum[n>=0, S(n, x)t^n] = 1/(1+t-4*2(x+1)t/(1-4*2(x+2)t/(1+t-4*4(x+3)t/(1-4+4(x+4)t/...)))).

A101923 Expansion of 2 * arccot(cos(x)).

Original entry on oeis.org

1, 2, 1, -148, -3719, -20098, 5055961, 403644152, 7831409041, -2707151879398, -472143935754479, -22085804322342748, 9362259685093715401, 2995219209329323622102, 274269338931958691728681, -132963342779629343323496848, -70698673853383423350187244639
Offset: 1

Views

Author

Ralf Stephan, Dec 27 2004

Keywords

Comments

Odd coefficients are zero.

Crossrefs

Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A012494 (k=-1), A000364 (k=1), A000464 (k=2), A156138 (k=3), A002439 (k=4).

Programs

  • Maple
    with(gfun):
    series(sin(x)/(1-(1/2)*sin(x)^2), x, 35):
    L := seriestolist(%):
    seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));
    # Peter Bala, Feb 06 2017
  • Mathematica
    With[{nn=40},Take[CoefficientList[Series[2ArcCot[Cos[x]],{x,0,nn}],x] Range[0,nn]!,{3,-1,2}]] (* Harvey P. Dale, Nov 17 2014 *) (* adapted by Vincenzo Librandi, Feb 07 2017 *)

Formula

2*acot(cos(x)) = Pi/2 + x^2/2! + 2*x^4/4! + x^6/6! - 148*x^8/8! - 3719*x^10/10! -...
2*atan(cos(x)) = Pi/2 - x^2/2! - 2*x^4/4! - x^6/6! + 148*x^8/8! + 3719*x^10/10! +...
G.f. sin(x)/(1 - 1/2*sin(x)^2) = x + 2*x^3/3! + x^5/5! - 148*x^7/7! - ... - Peter Bala, Feb 06 2017

Extensions

More terms from Harvey P. Dale, Nov 17 2014
Signs of the data entries corrected by Peter Bala, Feb 06 2017

A151751 Triangle of coefficients of generalized Bernoulli polynomials associated with a Dirichlet character modulus 8.

Original entry on oeis.org

2, 0, 6, -44, 0, 12, 0, -220, 0, 20, 2166, 0, -660, 0, 30, 0, 15162, 0, -1540, 0, 42, -196888, 0, 60648, 0, -3080, 0, 56, 0, -1771992, 0, 181944, 0, -5544, 0, 72, 28730410, 0, -8859960, 0, 454860, 0, -9240, 0, 90
Offset: 2

Views

Author

Peter Bala, Jun 17 2009

Keywords

Comments

Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)-1) * sum {r = 0..m-1} X(r)*exp(r*t)
= sum {n = 0..inf} B_n(X,x)*t^n/n!.
For the theory and properties of these polynomials see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0.
Cf. A153641.

Examples

			The triangle begins
n\k|........0.......1........2.......3......4.......5.......6
=============================================================
.2.|........2
.3.|........0.......6
.4.|......-44.......0.......12
.5.|........0....-220........0......20
.6.|.....2166.......0.....-660.......0......30
.7.|........0...15162........0...-1540.......0.....42
.8.|..-196888.......0....60648.......0...-3080......0......56
...
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.

Crossrefs

Programs

  • Maple
    with(gfun):
    for n from 2 to 10 do
    Genbernoulli(n,x) := 8^(n-1)*(bernoulli(n,(x+1)/8)-bernoulli(n,(x+3)/8)-bernoulli(n,(x+5)/8)+bernoulli(n,(x+7)/8));
    seriestolist(series(Genbernoulli(n,x),x,10))
    end do;

Formula

TABLE ENTRIES
(1)... T(2*n,2*k+1) = 0, T(2*n+1,2*k) = 0;
(2)... T(2*n,2*k) = (-1)^(n-k-1)*C(2*n,2*k)*2*(n-k)*A000464(n-k-1);
(3)... T(2*n+1,2*k+1) = (-1)^(n-k-1)*C(2*n+1,2*k+1)*2*(n-k)*A000464(n-k-1);
where C(n,k) = binomial(n,k).
GENERATING FUNCTION
The e.g.f. for these generalized Bernoulli polynomials is
(4)... t*exp(x*t)*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1)
= sum {n = 2..inf} B_n(X,x)*t^n/n! = 2*t^2/2! + 6*x*t^3/3! + (12*x^2 - 44)*t^4/4! + ....
In terms of the ordinary Bernoulli polynomials B_n(x)
(5)... B_n(X,x) = 8^(n-1)*{B_n((x+1)/8) - B_n((x+3)/8) - B_n((x+5)/8) + B_n((x+7)/8)}.
The B_n(X,x) are Appell polynomials of the form
(6)... B_n(X,x) = sum {j = 0..n} binomial(n,j)*B_j(X,0)*x*(n-j).
The sequence of generalized Bernoulli numbers
(7)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...]
has the e.g.f.
(8)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1),
which simplifies to
(9)... t*sinh(t)/cosh(2*t).
Hence
(10)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1); B_(2*n+1)(X,0) = 0.
The sequence {B_(2*n)(X,0)}n>=2 is A161722.
RELATION WITH TWISTED SUMS OF POWERS
The generalized Bernoulli polynomials may be used to evaluate sums of k-th powers twisted by the function X(n). For the present case the result is
(11)... sum{n = 0..8*N-1} X(n)*n^k = 1^k-3^k-5^k+7^k- ... +(8*N-1)^k
= [B_(k+1)(X,8*N) - B_(k+1)(X,0)]/(k+1)
For the proof, apply [Cohen, Corollary 9.4.17 with m = 8 and x = 0].
MISCELLANEOUS
(12)... Row sums [2, 6, -32, ...] = (-1)^(1+binomial(n,2))*A109572(n)
= (-1)^(1+binomial(n,2))*n*A000828(n-1) = (-1)^(1+binomial(n,2))*n* 2^(n-2)*A000111(n-1).

A156138 Q_{2n+1}(sqrt(2))/sqrt(2) (see A104035).

Original entry on oeis.org

1, 17, 901, 99917, 18991081, 5514615017, 2270974911661, 1258937450889317, 903952433274722641, 816101554527859690817, 904827968753139590344021, 1208617989532834039606507517, 1914312457105234828011498655801, 3547500444096776665586928259547417, 7604155838367549221056955383942297981
Offset: 0

Views

Author

N. J. A. Sloane, Nov 06 2009

Keywords

Examples

			G.f. = 1 + 17*x + 901*x^2 + 99917*x^3 + 18991081*x^4 + 5514615017*x^5 + ... - _Michael Somos_, Aug 19 2018
		

Crossrefs

Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A101923 (k=1/2), A000364 (k=1), A000464 (k=2), A002439 (k=4).

Programs

  • Maple
    with(gfun):
    series(sin(x)/(1-3*sin(x)^2), x, 30):
    L := seriestolist(%):
    seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));
    # Peter Bala, Feb 06 2017
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Sin[x]/(1 - 3*Sin[x]^2), {x, 0, nmax}], x]*Range[0, nmax]!][[2 ;; ;; 2]] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    x='x+O('x^50); v=Vec(serlaplace(sin(x)/(1 - 3*sin(x)^2))); vector((#v-1)\2 ,n,v[2*n-1]) \\ G. C. Greubel, Aug 17 2018

Formula

E.g.f.: sin(x)/(1 - 3*sin(x)^2) = x + 17*x^3/3! + 901*x^5/5! + 99917*x^7/7! + ... - Peter Bala, Feb 06 2017

A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1

Views

Author

Peter Bala, Sep 18 2015

Keywords

Comments

Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.

Examples

			The triangular array begins
1
1   2
1  11     10
1  46    241      108
1 128   2739    10411      2214
1 272  16384   265244    836321       75708
1 522  64964  2883584  45094565   112567243     3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
		

Crossrefs

Cf. A000182 (d(1,n)), A000464 (d(2,n)), A000191 (d(3,n)), A000318 (d(4,n)), A000320 (d(5,n)), A000411 (d(6,n)), A064072 (d(7,n)), A235605, A235606, A262143, A262145 (row 1 of square array).

A370411 Square array T(n, k) = denominator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

1, 75, 1, 16875, 24, 1, 221484375, 34560, 18, 1, 116279296875, 116121600, 58320, 39, 1, 12950606689453125, 780337152000, 440899200, 296595, 51, 1, 4861333986053466796875, 8899589151129600, 6666395904000, 68420017575, 663255, 63, 1, 677114376628875732421875
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
           1,            1,             1,              1,                 1
          75,           24,            18,             39,                51
       16875,        34560,         58320,         296595,            663255
   221484375,    116121600,     440899200,    68420017575,       20126472975
116279296875, 780337152000, 6666395904000, 93393323989875, 10382542981248375
		

Crossrefs

Cf. A370412 (numerators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 30, if(isfundamental(k), v=concat(v, denominator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, denominator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.denominator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = denominator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = denominator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = denominator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 1, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).

A370412 Square array T(n, k) = numerator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

0, 2, 0, 4, 1, 0, 536, 11, 1, 0, 2888, 361, 23, 2, 0, 3302008, 24611, 1681, 116, 4, 0, 12724582576, 2873041, 257543, 267704, 328, 4, 0, 18194938976, 27233033477, 67637281, 3741352, 92656, 88, 1, 0, 875222833138832, 11779156811, 18752521534133, 1156377368, 479214352, 287536, 29, 2, 0
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
          0,           0,              0,               0,                 0
          2,           1,              1,               2,                 4
          4,          11,             23,             116,               328
        536,         361,           1681,          267704,             92656
       2888,       24611,         257543,         3741352,         479214352
    3302008,     2873041,       67637281,      1156377368,       14816172016
12724582576, 27233033477, 18752521534133, 753075777246704, 16476431095568992
		

Crossrefs

Cf. A370411 (denominators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 50, if(isfundamental(k), v=concat(v, numerator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, numerator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.numerator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = numerator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = numerator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = numerator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 0, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).
Previous Showing 11-20 of 20 results.