cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A361102 1 together with numbers having at least two distinct prime factors.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1

Views

Author

Keywords

Comments

This is the union of 1 and A024619. It is the sequence C used in the definition of A360519. Since C is central to the analysis of A360519 it deserves its own entry.
This has the same relationship to A024619 as A000469 does to A120944 for squarefree numbers.

Crossrefs

Programs

  • Maple
    isa := n -> is(irem(ilcm(seq(1..n-1)), n) = 0):
    aList := upto -> select(isa, [seq(1..upto)]):
    aList(112); # Peter Luschny, May 17 2023
  • Mathematica
    Select[Range[120], Not@*PrimePowerQ] (* Michael De Vlieger, May 17 2023 *)
  • Python
    from sympy import primepi, integer_nthroot
    def A361102(n):
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024
  • SageMath
    def A361102List(upto: int) -> list[int]:
        return sorted(Set(1..upto).difference(prime_powers(upto)))
    print(A361102List(112))  # Peter Luschny, May 17 2023
    

Formula

From Peter Luschny and Michael De Vlieger, May 17 2023: (Start)
The sequence is the complement of the prime powers in the positive integers, a = A000027 \ A246655.
k is in this sequence <=> k divides lcm(1, 2, ..., k-1). (End)
This sequence is {1} U { A120944 U A126706 } = {1} U A024619. - Michael De Vlieger, May 17 2023

Extensions

Offset set to 1 by Peter Luschny, May 17 2023

A119313 Numbers with a prime as third-smallest divisor.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A001221(m) > 1 and (A067029(m) = 1 or A119288(m) < A020639(m)^2).

Examples

			a(1) = A087134(3) = 6.
From _Gus Wiseman_, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
    6: {1,2,3,6}
   10: {1,2,5,10}
   12: {1,2,3,4,6,12}
   14: {1,2,7,14}
   15: {1,3,5,15}
   18: {1,2,3,6,9,18}
   21: {1,3,7,21}
   22: {1,2,11,22}
   24: {1,2,3,4,6,8,12,24}
   26: {1,2,13,26}
   30: {1,2,3,5,6,10,15,30}
   33: {1,3,11,33}
   34: {1,2,17,34}
   35: {1,5,7,35}
   36: {1,2,3,4,6,9,12,18,36}
   38: {1,2,19,38}
   39: {1,3,13,39}
   42: {1,2,3,6,7,14,21,42}
   45: {1,3,5,9,15,45}
   46: {1,2,23,46}
(End)
		

Crossrefs

Complement of A119314.
Subsequences: A006881, A000469, A008588.
A subset of A002808 and A080257.
Numbers whose third-largest divisor is prime are A328338.
Second-smallest divisor is A020639.
Third-smallest divisor is A292269.

Programs

  • Maple
    q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
             sort([numtheory[divisors](n)[]])):
    select(q, [$1..200])[];  # Alois P. Heinz, Oct 19 2019
  • Mathematica
    Select[Range[100],Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
    Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)

Extensions

Name edited by Gus Wiseman, Oct 19 2019

A303554 Union of the prime powers (p^k, p prime, k >= 0) and numbers that are the product of 2 or more distinct primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			42 is in the sequence because 42 = 2*3*7 (3 distinct prime factors).
81 is in the sequence because 81 = 3^4 (4 prime factors, 1 distinct).
		

Crossrefs

Complement of A126706.
Union of A005117 and A246547.
Union of A000469 and A246655.
Union of A000961 and A120944.
Cf. A025475.

Programs

  • Mathematica
    Select[Range[110], PrimePowerQ[#] || SquareFreeQ[#] &]
    Select[Range[110], PrimeNu[#] == 1 || PrimeNu[#] == PrimeOmega[#] &]
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A303554(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 19 2024

A303606 Powers of composite squarefree numbers that are not squarefree.

Original entry on oeis.org

36, 100, 196, 216, 225, 441, 484, 676, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1764, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10404, 10648, 11025, 11236
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			196 is in the sequence because 196 = 2^2*7^2.
4900 is in the sequence because 4900 = 2^2*5^2*7^2.
		

Crossrefs

Intersection of A024619 and A072777.
Intersection of A072774 and A126706.
Intersection of A013929 and A182853.

Programs

  • Mathematica
    Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &]
    seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* Amiram Eldar, Feb 12 2021 *)
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A303606(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A120944(n)-1)*A120944(n)) = Sum_{k>=2} (zeta(k)/zeta(2*k) - P(k) - 1) = 0.07547719891508850482..., where P(k) is the prime zeta function. - Amiram Eldar, Feb 12 2021

A177492 Products of squares of 2 or more distinct primes.

Original entry on oeis.org

36, 100, 196, 225, 441, 484, 676, 900, 1089, 1156, 1225, 1444, 1521, 1764, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 10404, 11025, 11236, 12100, 12321, 12996, 13225, 13924
Offset: 1

Views

Author

Keywords

Examples

			36=2^2*3^2, 100=2^2*5*2, 196=2^2*7^2,..900=2^2*3^2*5^2,..
		

Crossrefs

Programs

  • Maple
    q:= n-> not isprime(n) and numtheory[issqrfree](n):
    map(x-> x^2, select(q, [$4..120]))[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={2},AppendTo[lst,n]],{n,0,8!}];lst
    Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={2}, Sow[n]], {n, 13225}]][[2, 1]]
    (* Second program *)
    Select[Range[120], And[CompositeQ[#], SquareFreeQ[#]] &]^2 (* Michael De Vlieger, Aug 17 2023 *)
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A177492(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m**2 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A120944(n)^2. - R. J. Mathar, Dec 06 2010

Extensions

Definition corrected by R. J. Mathar, Dec 06 2010

A354911 Number of factorizations of n into relatively prime prime-powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 1, 0, 6, 0, 1, 2, 2, 1, 1, 0, 5, 0, 1, 0, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			The a(n) factorizations for n = 6, 12, 24, 36, 48, 72, 96:
  2*3  3*4    3*8      4*9      3*16       8*9        3*32
       2*2*3  2*3*4    2*2*9    2*3*8      2*4*9      3*4*8
              2*2*2*3  3*3*4    3*4*4      3*3*8      2*3*16
                       2*2*3*3  2*2*3*4    2*2*2*9    2*2*3*8
                                2*2*2*2*3  2*3*3*4    2*3*4*4
                                           2*2*2*3*3  2*2*2*3*4
                                                      2*2*2*2*2*3
		

Crossrefs

This is the relatively prime case of A000688, partitions A023894.
Positions of 0's are A246655 (A000961 includes 1).
For strict instead of relatively prime we have A050361, partitions A054685.
Positions of 1's are A000469 (A120944 excludes 1).
For pairwise coprime instead of relatively prime we have A143731.
The version for partitions instead of factorizations is A356067.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A289509 lists numbers whose prime indices are relatively prime.
A295935 counts twice-factorizations with constant blocks (type PPR).
A355743 lists numbers with prime-power prime indices, squarefree A356065.

Programs

  • Mathematica
    ufacs[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[ufacs[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[Select[ufacs[Select[Divisors[n],PrimePowerQ[#]&],n],GCD@@#<=1&]],{n,100}]

Formula

a(n) = A000688(n) if n is nonprime, otherwise a(n) = 0.

A380478 Nonprime numbers k such that A380459(k) has no divisors of form p^p.

Original entry on oeis.org

1, 6, 14, 26, 38, 62, 74, 86, 122, 134, 146, 158, 186, 194, 206, 218, 254, 278, 302, 314, 326, 362, 386, 398, 422, 434, 446, 458, 482, 542, 554, 566, 614, 626, 662, 674, 698, 734, 746, 758, 794, 818, 842, 854, 866, 878, 906, 914, 926, 974, 998, 1046, 1082, 1094, 1142, 1154, 1202, 1214, 1226, 1238, 1262, 1266, 1286
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2025

Keywords

Comments

See A380468 to find why each term must be squarefree.
After the initial 1 all terms here are even (thus in A039956) because as A276086(k) flips the parity of k, having more than one odd prime factor in k without a single 2 would make A380459(k) a multiple of 4, and thus outside of A048103.
For a similar reason, any term that is not a multiple of 3 may have at most 3 prime factors.

Crossrefs

Cf. A048103, A276086, A380459, A380474 (subsequence), A380477 (characteristic function).
Intersection of A380468 and A018252. (A380468 without primes).
Subsequence of A000469. Subsequence of A039956 (after the initial 1).

Programs

A073249 Nonprime squarefree numbers n such that both n-1 and n+1 are not squarefree and not prime.

Original entry on oeis.org

26, 51, 55, 91, 161, 170, 235, 249, 295, 305, 339, 341, 362, 377, 413, 415, 451, 485, 489, 530, 551, 559, 579, 595, 629, 638, 649, 651, 665, 667, 685, 687, 703, 721, 723, 737, 749, 849, 851, 874, 917, 926, 949, 951, 955, 962, 989, 1015, 1027, 1057, 1059
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    npsQ[n_]:=SquareFreeQ[n]&&NoneTrue[n+{1,0,-1},PrimeQ]&&NoneTrue[n+{1,-1},SquareFreeQ]; Select[Range[2000],npsQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 20 2019 *)
    Mean/@SequencePosition[Table[Which[CompositeQ[n]&&SquareFreeQ[n],1,!SquareFreeQ[ n] && CompositeQ[ n],-1,True,0],{n,1100}],{-1,1,-1}] (* Harvey P. Dale, Jun 17 2022 *)

Extensions

Corrected by Harvey P. Dale, Jan 20 2019

A073250 Nonprime squarefree numbers n such that n+1 is also squarefree and nonprime, but not n-1 and n+2.

Original entry on oeis.org

14, 21, 38, 57, 65, 69, 77, 105, 110, 114, 118, 122, 129, 133, 145, 154, 158, 165, 177, 182, 194, 205, 209, 221, 230, 237, 246, 258, 273, 290, 298, 309, 318, 326, 329, 334, 345, 354, 357, 365, 370, 381, 385, 390, 398, 402, 406, 410, 417, 426, 429, 434, 437
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    tQ[n_]:=!PrimeQ[n+1]&&SquareFreeQ[n+1]&&(PrimeQ[n-1]||!SquareFreeQ[n-1])&&(PrimeQ[n+2]||!SquareFreeQ[n+2])
    Select[Select[Complement[Range[500],Prime[Range[PrimePi[500]]]],SquareFreeQ],tQ]  (* Harvey P. Dale, Feb 14 2011 *)
    SequencePosition[Table[If[SquareFreeQ[n]&&!PrimeQ[n],1,0],{n,500}],{0,1,1,0}][[;;,1]]+1 (* Harvey P. Dale, Feb 27 2023 *)

A073251 Numbers k such that k, k+1 and k+2 are nonprime and squarefree.

Original entry on oeis.org

33, 85, 93, 141, 185, 201, 213, 217, 253, 265, 285, 301, 321, 393, 445, 453, 469, 481, 517, 533, 553, 581, 589, 609, 633, 669, 697, 705, 713, 753, 777, 789, 793, 805, 813, 869, 893, 897, 901, 913, 921, 933, 957, 985, 993, 1001, 1005, 1041, 1045, 1065, 1113
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

k-1 and k+3 are not squarefree. Proof: k is odd, otherwise k or k+2 would be divisible by 4. Thus k+1 is even and not divisible by 4, hence k-1 and k+3 are divisible by 4.

Crossrefs

Programs

  • Mathematica
    f[upto_]:=Module[{pp=PrimePi[upto],n},lst=Partition[Complement[Range[upto], Prime[Range[pp]]],3,1];Transpose[Select[lst,And@@SquareFreeQ/@#&]][[1]]]; f[1200] (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isok1(k) = !isprime(k) && issquarefree(k); \\ A000469
    isok(k) = isok1(k) && isok1(k+1) && isok1(k+2); \\ Michel Marcus, Mar 25 2021

Extensions

Edited by Klaus Brockhaus, Aug 07 2006
Previous Showing 11-20 of 44 results. Next