cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A123095 Sum of first n 11th powers.

Original entry on oeis.org

0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), this sequence (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    [seq(add(i^11, i=1..n), n=0..20)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
  • Python
    A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(12):
            m[i+1]+= m[i]
        A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

a(n) = n*A023002(n) - Sum_{i=0..n-1} A023002(i). - Bruno Berselli, Apr 27 2010
a(n) = n^2*(n+1)^2*(2*n^8 +8*n^7 +4*n^6 -16*n^5 -5*n^4 +26*n^3 -3*n^2 -20*n +10)/24. - Bruno Berselli, Oct 03 2010
G.f.: x*(x^10 +2036*x^9 +152637*x^8 +2203488*x^7 +9738114*x^6 +15724248*x^5 +9738114*x^4 +2203488*x^3 +152637*x^2 +2036*x +1)/(1-x)^13. - Colin Barker, May 27 2012
a(n) = (-1)*Sum_{j=1..11} j*Stirling1(n+1,n+1-j)*Stirling2(n+11-j,n). - Mircea Merca, Jan 25 2014
a(n) = 1728*A006542(n+2)^2 + 216*A288876(n-2) + 96*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 25 2024

A132337 Sum of the integers from 1 to n, excluding the perfect sixth powers.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Crossrefs

Different from A000096.

Programs

  • Maple
    A132337 := proc(n) r := floor(n^(1/6)) ; A000217(n)-A000540(r); end proc: seq(A132337(n),n=1..40) ; # R. J. Mathar
  • Mathematica
    Accumulate[Table[If[IntegerQ[Surd[n,6]],0,n],{n,60}]] (* Harvey P. Dale, Jun 01 2022 *)
  • PARI
    g6(n)=for(x=1,n,r=floor(x^(1/6));sum6=r^7/7+r^6/2+r^5/2-r^3/6+r/ 42;sn=x* (x+1)/2;print1(sn-sum6","))
    
  • PARI
    A132337(n)=n*(n+1)/2-(1+n=floor(sqrtn(n+.5,6)))*(2*n+1)*((n^3+2*n^2-1)*n*3+1)*n/42 \\ M. F. Hasler, Oct 09 2010

Formula

Let r = floor(n^(1/6)). Then a(n) = n(n+1)/2 - (r^7/7 + r^6/2 + r^5/2 - r^3/6 + r/42) = A000217(n) - A000540(r).
a(n) = A000217(n) - A000540(A178489(n)). - M. F. Hasler, Oct 09 2010

Extensions

Incorrect formula deleted by Jon E. Schoenfield, Jun 12 2010
Incorrect program replaced by R. J. Mathar, Oct 08 2010
Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.
Incorrect linear recurrence removed by Georg Fischer, Apr 11 2019

A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.

Original entry on oeis.org

0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0

Views

Author

Bruno Berselli, Oct 05 2010 - Oct 18 2010

Keywords

Comments

This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).

Crossrefs

Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
  • Mathematica
    Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
  • Python
    A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(14):
            m[i+1]+= m[i]
        A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*Stirling1(n+1,n+1-j)*Stirling2(n+13-j,n). - Mircea Merca, Jan 25 2014

A081175 Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Comments

Union of sums of k-th powers, for k >= 1.

Examples

			30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
		

Crossrefs

For primes in this sequence see A164307.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
    sort(convert(A,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]

Extensions

Corrected and extended by Robert G. Wilson v, May 08 2003

A181475 a(n) = 3*n^4 + 6*n^3 - 3*n + 1.

Original entry on oeis.org

1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2010 - Oct 29 2010

Keywords

Comments

If gcd(n,7) = gcd(n+1,7) = gcd(2*n+1,7) = 1 then a(n) == 0 (mod 7) (E. Picutti, see References).

References

  • Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.

Crossrefs

Subsequence of A003215.

Programs

  • Magma
    [3*n^4+6*n^3-3*n+1: n in [0..31]];
  • Mathematica
    Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: (1 + 2*x + 66*x^2 + 2*x^3 + x^4)/(1-x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 6*12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6*A008594(n-1).
a(n) = 2*a(n-1) - a(n-2) + 6*A003154(n).
a(n) = a(n-1) + 6*A007588(n).
a(n) = 1 + 6*A062392(n).
a(n) = 7*A000540(n)/A000330(n) = A154105(A000096(n-1)) for n > 0.
Sum_{i=0..n} a(i) = (3*n^5 + 15*n^4 + 20*n^3 - 3*n + 5)/5.
a(n) = 7*(3*n^2 + 3*n - 1)*(Sum_{k=1..n} k^6)/(5*Sum_{k=1..n} k^4), n > 0. - Gary Detlefs, Oct 18 2011

Extensions

Formula, program and crossref added by Bruno Berselli, Aug 22 2011

A079618 Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: Sum_{i=1..m} i^(n-1) = Sum_{k=1..n} T(n,k)*m^k/A064538(n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 0, 1, 2, 1, -1, 0, 10, 15, 6, 0, -1, 0, 5, 6, 2, 1, 0, -7, 0, 21, 21, 6, 0, 2, 0, -7, 0, 14, 12, 3, -3, 0, 20, 0, -42, 0, 60, 45, 10, 0, -3, 0, 10, 0, -14, 0, 15, 10, 2, 5, 0, -33, 0, 66, 0, -66, 0, 55, 33, 6, 0, 10, 0, -33, 0, 44, 0, -33, 0, 22, 12, 2, -691, 0, 4550, 0, -9009, 0, 8580, 0, -5005, 0, 2730, 1365, 210
Offset: 1

Views

Author

Henry Bottomley, Jan 29 2003

Keywords

Comments

Rosinger connects this sequence to Weisstein's Faulhaber's Formula page. Rosinger also discusses, without reference to OEIS, (1.1) A000217 Triangular numbers: a(n) = C(n+1,2) = n*(n+1)/2 = 0+1+2+...+n; (1.2) A000330 Square pyramidal numbers: 0^2+1^2+2^2+...+n^2 = n*(n+1)*(2n+1)/6; (1.4) A033312 n! - 1 [with different offset and the formula 1*1! + 2*2! + 3*3! + ...]; (1.4) A007489 Sum_{k=1..n} k!. - Jonathan Vos Post, Feb 22 2007

Examples

			Triangle T(n, k) begins:
n\k 1   2   3   4   5    6   7   8   9 10 ...
1:  1
2:  1   1
3:  1   3   2
4:  0   1   2   1
5: -1   0  10  15   6
6:  0  -1   0   5   6    2
7:  1   0  -7   0  21   21   6
8:  0   2   0  -7   0   14  12   3
9: -3   0  20   0 -42    0  60  45  10
10: 0  -3   0  10   0  -14   0  15  10  2
... Reformatted. - _Wolfdieter Lang_, Feb 02 2015
For example row n=7: partial sums of 6th powers (A000540)
  1^6+2^6+...+m^6 = (m-7*m^3+21*m^5+21*m^6+6*m^7)/42.
		

References

  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 106, 1996.

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; local A, B;
    A := proc(n) option remember; denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)) end:
    B := proc(n) option remember; add(T(n,j),j=2..n) end;
    if k>1 then T(n-1,k-1)*(n-1)*A(n-1)/(k*A(n-2)) elif n>1 then A(n-1)-B(n) else 1 fi end: seq(print(seq(T(n,k),k=1..n)),n=1..10); # Peter Luschny, Feb 02 2015
    # Alternative:
    A079618row := proc(n) bernoulli(n,x); (subs(x=x+1,%)-subs(x=1,%))/n;
    seq(coeff(numer(%),x,k), k=1..n) end:
    seq(A079618row(n), n=1..13); # Peter Luschny, Jul 14 2020
  • Mathematica
    T[n_, k_] := T[n, k] = Module[{A, B}, A[m_] := A[m] = Denominator[ Together[ (BernoulliB[m+1, x] - BernoulliB[m+1])/(m+1)]]; B[m_] := B[m] = Sum[T[m, j], {j, 2, m}]; Which[k>1, T[n-1, k-1]*(n-1)*A[n-1]/(k*A[n-2]), n>1, A[n-1] - B[n], True, 1]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 04 2015, after Peter Luschny *)
  • PARI
    row(p) = {v = vector(p+1, k, (-1)^(k==p)*binomial(p+1, k)*bernfrac(p+1-k))/(p+1); lcmd = lcm(vector(#v, k, denominator(v[k]))); v*lcmd;}
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Feb 16 2016

Formula

T(n, k) = T(n-1, k-1) * (n-1) * A064538(n-1) / (k*A064538(n-2)) for k>1; T(n, 1) = A064538(n-1) - Sum_{k=2..n} T(n, k) for n>1; T(1, 1)=1.

Extensions

Edited. Offset corrected from 0 to 1. Typo in formula corrected. - Wolfdieter Lang, Feb 02 2015
Previous Showing 21-26 of 26 results.