A263968
a(n) = Li_{-n}(phi) + Li_{-n}(1-phi), where Li_n(x) is the polylogarithm, phi=(1+sqrt(5))/2 is the golden ratio.
Original entry on oeis.org
-3, 4, -18, 112, -930, 9664, -120498, 1752832, -29140290, 545004544, -11325668178, 258892951552, -6456024679650, 174410345857024, -5074158021135858, 158168121299894272, -5258993667674555010, 185786981314092335104, -6949466928081909755538
Offset: 0
For n = 4, Li_{-4}(phi) = -930 - 416*sqrt(5), so a(4) = -930 and A000557(4) = 416.
-
a := n -> polylog(-n,(1+sqrt(5))/2)+polylog(-n,(1-sqrt(5))/2):
seq(round(evalf(a(n),32)), n=0..18); # Peter Luschny, Nov 01 2015
-
Round@Table[PolyLog[-n, GoldenRatio] + PolyLog[-n, 1-GoldenRatio], {n, 0, 20}]
Table[(-1)^(n+1) Sum[k! LucasL[k+2] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
vector(100, n, n--; (-1)^(n+1)*sum(k=0, n, k!*stirling(n, k, 2)*(2*fibonacci(k+1) + fibonacci(k+2)))) \\ Altug Alkan, Oct 31 2015
A332257
E.g.f.: (1 - sinh(x)) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 1, 4, 25, 208, 2161, 26944, 391945, 6515968, 121866721, 2532496384, 57890223865, 1443611004928, 38999338931281, 1134616226381824, 35367467110007785, 1175946733416153088, 41543231955279099841, 1553948045857778827264, 61355543097139813855705
Offset: 0
-
nmax = 19; CoefficientList[Series[(1 - Sinh[x])/(1 - 2 Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace((1 - sinh(x + O(x*x^n))) / (1 - 2*sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020
A358031
Expansion of e.g.f. (1 - log(1-x))/(1 + log(1-x) * (1 - log(1-x))).
Original entry on oeis.org
1, 2, 8, 52, 450, 4878, 63474, 963744, 16724016, 326497632, 7082393136, 168995017200, 4399028766192, 124051494462816, 3767315220903072, 122581568808533760, 4254486275273419008, 156890997080103149568, 6125936704495619486976, 252480641031903073955328
Offset: 0
-
f:= proc(n) local k; add(k!*combinat:-fibonacci(k+2)*abs(Stirling1(n,k)),k=0..n) end proc:
map(f, [$0..30]); # Robert Israel, Oct 25 2022
-
With[{nn=20},CoefficientList[Series[(1-Log[1-x])/(1+Log[1-x](1-Log[1-x])),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 25 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-x))/(1+log(1-x)*(1-log(1-x)))))
-
a(n) = sum(k=0, n, k!*fibonacci(k+2)*abs(stirling(n, k, 1)));
A358032
Expansion of e.g.f. (1 + log(1+x))/(1 - log(1+x) * (1 + log(1+x))).
Original entry on oeis.org
1, 2, 4, 16, 66, 438, 2694, 25296, 204576, 2509728, 24912816, 381010320, 4440815472, 82150191264, 1089159690912, 23879423005440, 351430312958208, 9005004020293632, 144184020764472576, 4277182103330660352, 73227226213747521792, 2499666592623881921280
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1+log(1+x))/(1-log(1+x)*(1+log(1+x)))))
-
a(n) = sum(k=0, n, k!*fibonacci(k+2)*stirling(n, k, 1));
A364822
Expansion of e.g.f. cosh(x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 2, 9, 56, 465, 4832, 60249, 876416, 14570145, 272502272, 5662834089, 129446475776, 3228012339825, 87205172928512, 2537079010567929, 79084060649947136, 2629496833837277505, 92893490657046167552, 3474733464040954877769, 137195165161622584426496, 5702069567580948171751185
Offset: 0
-
a := n -> add(binomial(n,2*k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-2*k,j), j=0..n-2*k), k=0..floor(n/2)):
seq(a(n), n = 0 .. 20);
# second program:
b := proc(n) option remember; `if`(n = 0, 1, 2+2*add(binomial(n,2*k-1)*b(n-2*k+1), k=1..floor((n+1)/2))) end:
a := proc(n) `if`(n = 0, 1, b(n)/2) end: seq(a(n), n = 0 .. 20);
# third program:
(1/2)*((exp(-x) + exp(x))/(1 + exp(-x) - exp(x))): series(%, x, 21):
seq(n!*coeff(%, x, n), n = 0..20); # Peter Luschny, Nov 07 2023
-
a[n_]:=n!*SeriesCoefficient[Cosh[x]/(1 - 2*Sinh[x]),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Nov 07 2023 *)
-
my(x='x+O('x^30)); Vec(serlaplace(cosh(x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Nov 07 2023
A005924
From solution to a difference equation.
Original entry on oeis.org
1, 7, 49, 415, 4321, 53887, 783889, 13031935
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A107404
Expansion of e.g.f. 1/(1 - sinh(x))^2.
Original entry on oeis.org
1, 2, 6, 26, 144, 962, 7536, 67706, 685824, 7730882, 95970816, 1300815386, 19113775104, 302616787202, 5135568746496, 92996021795066, 1789758460329984, 36479831022049922, 785020114093080576, 17785273588395966746, 423150055005134782464, 10548427254444904799042
Offset: 0
-
E(x):=1/(1-sinh(x))^2: f[0]:=E(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..30);
-
CoefficientList[Series[1/(1-Sinh[x])^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (k+1)!*a136630(n, k)); \\ Seiichi Manyama, Feb 17 2025
A367887
Expansion of e.g.f. exp(2*x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 4, 20, 130, 1088, 11314, 141080, 2052250, 34118048, 638102434, 13260323240, 303117147370, 7558845354608, 204203189722354, 5940927689713400, 185186461979970490, 6157337034085736768, 217523186522883467074, 8136577601614291359560, 321261794453042025993610, 13352198666907246870560528
Offset: 0
-
a := n -> -1-0^n+add(k!*combinat[fibonacci](k+4)*Stirling2(n, k), k = 0 .. n):
seq(a(n), n=0..20);
# second program:
a := proc(n) option remember; `if`(n=0,1,3^n+add((2^(n-k)-1)*binomial(n, k)*a(k), k=0..n-1)) end:
seq(a(n), n=0..20);
# third program:
a := n -> add(2^k*binomial(n, k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-k, j), j=0..n-k), k=0..n):
seq(a(n), n=0..20);
-
my(x='x+O('x^30)); Vec(serlaplace(exp(2*x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Dec 04 2023
Comments