A024172
Integer part of ((3rd elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)).
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 8, 10, 13, 16, 20, 24, 28, 33, 38, 43, 48, 54, 60, 67, 74, 81, 89, 97, 105, 113, 122, 131, 141, 151, 161, 172, 183, 194, 205, 217, 229, 242, 255, 268, 282, 296, 310, 324
Offset: 2
a(3) = floor(6/11) = 0; a(4) = floor(50/35) = 1. - _R. J. Mathar_, Sep 15 2009
-
List([2..50],n->Int((1/2)*n*(n-2)*(n+1)/(3*n+2))); # Muniru A Asiru, May 19 2018
-
seq(floor((1/2)*n*(n-2)*(n+1)/(3*n+2)),n=2..50); # Muniru A Asiru, May 19 2018
-
Table[Floor[1/2 (n - 2) n (n + 1)/ (3 n + 2)], {n, 2, 45}] (* Ivan Neretin, May 19 2018 *)
A024173
Integer part of ((4th elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)).
Original entry on oeis.org
0, 0, 0, 3, 9, 21, 41, 72, 119, 185, 275, 395, 549, 744, 987, 1285, 1645, 2076, 2586, 3185, 3882, 4688, 5612, 6667, 7863, 9213, 10731, 12428, 14318, 16416, 18737, 21295, 24106, 27187, 30553, 34223, 38214, 42543, 47231, 52295, 57756, 63633, 69948, 76721
Offset: 2
a(4) = floor(24/35) = 0; a(5) = floor(274/85) = 3. - _R. J. Mathar_, Sep 15 2009
-
List([2..50],n->Int((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2))); # Muniru A Asiru, May 19 2018
-
seq(floor((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2)),n=2..50); # Muniru A Asiru, May 19 2018
-
Table[Floor[1/240 (n - 3) (n - 2) (15 n^3 + 15 n^2 - 10 n - 8)/ (2 + 3 n)], {n, 2, 45}] (* Ivan Neretin, May 19 2018 *)
A027916
Least k such that 1+2+...+k >= E{1,2,...,n}, where E = 2nd elementary symmetric function.
Original entry on oeis.org
2, 5, 8, 13, 19, 25, 33, 42, 51, 62, 74, 86, 100, 115, 130, 147, 165, 183, 203, 224, 245, 268, 292, 316, 342, 369, 396, 425, 455, 485, 517, 550, 583, 618, 654, 690, 728, 767, 806, 847, 889, 931, 975, 1020, 1065, 1112, 1160, 1208, 1258, 1309, 1360, 1413, 1467
Offset: 2
-
Table[Total[Table[IntegerExponent[2^(n - k) 4^k, 8], {k, 0, n}]], {n, 2, 100}] (* Fred Daniel Kline, Jun 05 2012 *)
A027919
a(n) = least k such that 2nd elementary symmetric function of {1,2,...,k+1} >= 3rd elementary symmetric function of {1,2,...,n}.
Original entry on oeis.org
2, 4, 6, 8, 11, 13, 16, 19, 22, 25, 29, 32, 36, 39, 43, 47, 51, 56, 60, 64, 69, 74, 78, 83, 88, 93, 98, 103, 109, 114, 119, 125, 131, 136, 142, 148, 154, 160, 166, 172, 178, 185, 191, 198, 204, 211, 217, 224, 231, 238, 245, 252, 259, 266
Offset: 3
-
SymmPolyn := proc(L::list,n::integer)
local c,a,sel;
a :=0 ;
sel := combinat[choose](nops(L),n) ;
for c in sel do
a := a+mul(L[e],e=c) ;
end do:
a;
end proc:
A027919 := proc(n)
local k,i;
[seq(i,i=1..n)] ;
e3 := SymmPolyn(%,3) ;
for k from 1 do
[seq(i,i=1..k+1)] ;
if SymmPolyn(%,2) >= e3 then
return k;
end if;
end do:
end proc: # R. J. Mathar, Sep 23 2016
A067057
Let A(n) = {1,2,3,...n}. Let B(r) and C(n-r) be two subsets of A(n) having r and n-r elements respectively, such that B(r) U C(n-r) = A(n) and B and C are disjoint; then a(n) = sum of the products of all combination sums of elements of B and C for r =1 to n-1.
Original entry on oeis.org
0, 2, 22, 140, 680, 2800, 10304, 34944, 111360, 337920, 985600, 2782208, 7641088, 20500480, 53903360, 139264000, 354287616, 889061376, 2203975680, 5404098560, 13120307200, 31569477632, 75342282752, 178467635200, 419849830400
Offset: 1
For n = 4, N = {1,2,3,4}, the 5 columns below give S sum(S) S' sum(S') prod(S):
{ } 0 {1,2,3,4} 10 0
{1} 1 {2,3,4} 9 9
{2} 2 {1,3,4} 8 16
{3} 3 {1,2,4} 7 21
{4} 4 {1,2,3} 6 24
{1,2} 3 {3,4} 7 21
{1,3} 4 {2,4} 6 24
{1,4} 5 {2,3} 5 25
Hence a(4) = 1*(2 + 3 + 4) + 2*(1 + 3 + 4) + 3*(1 + 2 + 4) + 4*(1 + 2 + 3) + (1 + 2)*(3 + 4) + (1 + 3)*(2 + 4) + (1 + 4)*(2 + 3) = 140.
-
print1(0, ", "); LIMIT = 40; V = vector(LIMIT*(LIMIT + 1)/2); V[1] = 1; for (i = 2, LIMIT, forstep (j = i*(i - 1)/2, 1, -1, V[i + j] += V[j]); V[i]++; k = i*(i + 1)/2; s = sum(j = 1, (k - 1)\2, j*(k - j)*V[j]); if (!(k%2), s += k*k*V[k\2]/8); print1(s, ", ")); \\ David Wasserman, Dec 22 2004
A134449
Sum of even products minus sum of odd products of different pairs of numbers from 1 to n.
Original entry on oeis.org
0, 2, 5, 29, 39, 129, 150, 374, 410, 860, 915, 1707, 1785, 3059, 3164, 5084, 5220, 7974, 8145, 11945, 12155, 17237, 17490, 24114, 24414, 32864, 33215, 43799, 44205, 57255, 57720, 73592, 74120, 93194, 93789, 116469, 117135, 143849, 144590, 175790
Offset: 1
{1,2,3} -> 1*2-1*3+2*3 = 5.
{1,2,3,4} -> 1*2-1*3+1*4+2*3+2*4+3*4 = 29.
{1,2,3,4,5} -> 1*2-1*3+1*4-1*5+2*3+2*4+2*5+3*4-3*5+4*5 = 39.
- Colin Barker, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
-
P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do a:=0; for j from 1 by 1 to i do w:=j; k:=i; while k>w do a:=a+w*k*(-1)^(w*k); k:=k-1; od; od; print(a); od; end: P(100);
-
epop[n_]:=Module[{f=Times@@@Subsets[n,{2}]},Total[Select[f,EvenQ]]-Total[ Select[ f,OddQ]]]; Table[epop[Range[n]],{n,40}] (* Harvey P. Dale, Sep 17 2017 *)
-
a(n) = {s = 0; for (i=1, n, for (j=i+1, n, p = i*j; if (p % 2, s -= p, s += p););); s;} \\ Michel Marcus, Mar 20 2015
A253207
a(n) = number of permutations of (1,2,...,n) producible by an ordered quadruple of distinct transpositions.
Original entry on oeis.org
11, 59, 359, 1799, 7091, 22995, 64143, 159093, 359348, 752180, 1478204, 2754752, 4906202, 8402522, 13907394, 22337388, 34933761, 53348561, 79746821, 116926733, 168459797, 238853045, 333735545, 460071495, 626402322, 843120306, 1122776354
Offset: 4
- Colin Barker, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A349645
Triangular array read by rows: T(n,k) is the number of square n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 11, 0, 1, 0, 24, 0, 35, 0, 1, 0, 0, 184, 0, 85, 0, 1, 0, 720, 0, 994, 0, 175, 0, 1, 0, 0, 9708, 0, 4249, 0, 322, 0, 1, 0, 40320, 0, 72764, 0, 14889, 0, 546, 0, 1, 0, 0, 648576, 0, 402380, 0, 44373, 0, 870, 0, 1
Offset: 0
The three square 3-permutations are (1, 2, 3) with three cycles (fixed points) and (3, 1, 2) & (2, 3, 1), each with one cycle.
Among the twelve square 4-permutations are {1, 4, 2, 3} & {1, 3, 4, 2} and {3, 4, 1, 2} & {4, 3, 2, 1}, all with two cycles but differing types.
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 2, 0, 1;
[4] 0, 0, 11, 0, 1;
[5] 0, 24, 0, 35, 0, 1;
[6] 0, 0, 184, 0, 85, 0, 1;
[7] 0, 720, 0, 994, 0, 175, 0, 1;
[8] 0, 0, 9708, 0, 4249, 0, 322, 0, 1;
...
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j*
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1))*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 23 2021
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j*multinomial[n,
Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]]*x^j, {j, 0, n/i}]]]];
T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A351760
a(n) = Sum_{1 <= i < j <= n} (i*j)^4.
Original entry on oeis.org
0, 0, 16, 1393, 26481, 247731, 1516515, 6978790, 26131686, 83684778, 237014778, 607915231, 1436816095, 3170754405, 6600189141, 13064343516, 24750198748, 45116627556, 79482515700, 135826148445, 225852708445, 366397514791, 581244702423, 903454469346, 1378306878690, 2066986566190
Offset: 0
- Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
{a(n) = n*(n-1)*(n+1)*(2*n-1)*(2*n+1)*(9*n^5+20*n^4-15*n^3-50*n^2+n+30)/1800};
-
a(n) = sum(j=2, n, sum(i=1, j-1, i^4*j^4));
-
def A351760(n): return n*(n*(n*(n*(n*(n*(n*(n*(n*(9*n+20<<2)-105)-300)+88)+390)-20)-200)+1)+30)//1800 # Chai Wah Wu, Oct 03 2024
A027920
Least k such that 2nd elementary symmetric function of {1,2,...,k} >= 4th elementary symmetric function of {1,2,...,n}.
Original entry on oeis.org
3, 6, 10, 15, 20, 26, 33, 40, 49, 58, 68, 78, 90, 102, 115, 129, 143, 158, 174, 191, 208, 227, 246, 265, 286, 307, 329, 352, 376, 400, 425, 451, 477, 505, 533, 562, 591, 622, 653, 685, 717, 751, 785, 820, 856, 892, 929, 967, 1006, 1046, 1086, 1127, 1169, 1211
Offset: 4
Comments