cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A003646 Class number of binary quadratic forms with fundamental discriminant A003658(n),n>=2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 1, 4, 2, 2, 2, 4, 1, 4, 2, 4, 1, 2, 4, 1, 2, 4, 4, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 4, 2, 2, 2, 4, 4, 3, 2, 1, 2, 2, 1, 2, 2, 2, 3, 4, 2, 2, 1, 4, 1, 4, 1, 2, 4, 1, 2, 2, 4, 2, 4, 1, 6, 1, 6, 4, 2, 2, 1, 2, 2, 4
Offset: 2

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 236, 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A014046 Second coordinate of fundamental unit of real quadratic field with discriminant A003658(n), n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 1, 8, 2, 1, 10, 3, 1, 4, 40, 1, 5, 2, 3, 250, 39, 1, 1, 42, 106, 5, 3, 1138, 2, 1, 8, 25, 146, 2, 273, 2968, 15, 6, 298, 1, 16, 2, 5, 6, 4, 17, 1856, 1, 2, 531, 1, 9384, 97, 3588, 10, 7, 253970, 2, 72664, 7, 3, 6440, 5, 521904, 12, 1, 1, 13
Offset: 2

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

See A014000 for much more about this sequence. - N. J. A. Sloane, Jun 14 2013

References

  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.

Crossrefs

Programs

  • PARI
    lista(nn) = { for (n=2, nn, if (isfundamental(n), nc = core(n); m = Mod (nc, 4); if ((m == 2) || (m == 3), d = 1); if ((m == 1), d = 4); b = 1; a = 0; while (a == 0, v = nc*b^2; if (issquare(v-d), a = sqrtint(v-d), if (issquare(v+d), a = sqrtint(v+d))); if (a == 0, b++; );); print1(b, ", ");););} \\ Michel Marcus, Sep 25 2018

Extensions

Offset corrected by Jianing Song, Mar 31 2019

A014600 Class numbers h(D) of imaginary quadratic orders with discriminant D == 0 or 1 mod 4, D<0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 3, 2, 2, 2, 4, 2, 1, 3, 5, 2, 2, 2, 4, 4, 3, 2, 4, 2, 1, 4, 7, 2, 2, 3, 5, 4, 3, 4, 6, 2, 2, 3, 8, 4, 2, 2, 5, 6, 3, 3, 8, 2, 2, 6, 10, 4, 2, 3, 5, 4, 5, 4, 6, 4, 3, 6, 10, 4, 2, 2, 7, 6, 4, 4, 10, 4, 1, 8, 11, 4, 4, 3, 6, 6, 5, 4, 8, 4, 2, 5, 13, 4, 4
Offset: 0

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

The sequence consists of class numbers of imaginary quadratic "orders", not imaginary quadratic "fields". The difference is that an imaginary quadratic order may be a non-maximal order, but a class number of an imaginary quadratic field always refers to the class number of the maximal order within that imaginary quadratic field. - David Jao, Sep 13 2020

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, pp. 514-5.

Programs

  • Mathematica
    ClassList[n_?Negative] :=
    Select[Flatten[#, 1] &@Table[
        {i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],
      Mod[#3, 1] == 0 && #3 >= # &&
          GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]
    a[n_] := Length[ClassList[Floor[n/2]*-4 - Mod[n,2] - 3]] (* David Jao, Sep 14 2020 *)
  • PARI
    a(n)=qfbclassno(n\2*-4-n%2-3) \\ Charles R Greathouse IV, Apr 25 2013
    
  • PARI
    a(n)=quadclassunit(n\2*-4-n%2-3).no \\ Charles R Greathouse IV, Apr 25 2013

Extensions

Name corrected by David Jao, Sep 13 2020

A105389 Primes of the form x^2 + 32 y^2, also primes p with h(-p) divisible by 8.

Original entry on oeis.org

41, 113, 137, 257, 313, 337, 353, 409, 457, 521, 569, 577, 593, 761, 809, 857, 881, 953, 1129, 1153, 1201, 1217, 1249, 1321, 1553, 1601, 1657, 1777, 1889, 1993
Offset: 1

Views

Author

John L. Drost, May 01 2005

Keywords

Examples

			41 = 9 + 32 * 1, 113 = 81 + 32 *1, 137 = 9 + 32*4
		

References

  • Barrucand, P. and Cohn, H. Note on primes of the form x^2 + 32 y^2, class number and residuacity, Journal fur die reine und angewandte Mathematik, v.238, pp. 67-70.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 32, 10000] (* see A106856 *)
    (* Second program: *)
    max = 10^4; Table[yy = {y, 1, Floor[Sqrt[(max - x^2)/32]]}; Table[x^2 + 32 y^2, yy // Evaluate], {x, 1, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, # <= max && PrimeQ[#]&]& (* Jean-François Alcover, Oct 04 2018 *)

A107998 Squarefree integers m for which the fundamental unit of Q(sqrt(m)) is of the form u + v*sqrt(m) for integer u, v.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 14, 15, 17, 19, 22, 23, 26, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 55, 57, 58, 59, 62, 65, 66, 67, 70, 71, 73, 74, 78, 79, 82, 83, 86, 87, 89, 91, 94, 95, 97, 101, 102, 103, 105, 106, 107, 110, 111, 113, 114, 115, 118, 119, 122, 123, 127
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • H. C. Williams, Eisenstein's problem and continued fractions, Utilitas Math. 37 (1990) 145-157.

Crossrefs

Cf. A107997.

Programs

  • Mathematica
    Select[ Range[2, 127], (fu = NumberFieldFundamentalUnits @ Sqrt[#]; SquareFreeQ[#] && IntegerQ[fu[[1, 2, 1]] ] && IntegerQ[fu[[1, 2, 2]] ]) &] (* Jean-François Alcover, Jun 20 2013 *)

A175639 Decimal expansion of Product_{p prime} (1-3/p^3+2/p^4+1/p^5-1/p^6).

Original entry on oeis.org

6, 7, 8, 2, 3, 4, 4, 9, 1, 9, 1, 7, 3, 9, 1, 9, 7, 8, 0, 3, 5, 5, 3, 8, 2, 7, 9, 4, 8, 2, 8, 9, 4, 8, 1, 4, 0, 9, 6, 3, 3, 2, 2, 3, 9, 1, 8, 9, 4, 4, 0, 1, 0, 3, 0, 3, 6, 4, 6, 0, 4, 1, 5, 9, 6, 4, 9, 8, 3, 3, 7, 0, 7, 4, 0, 1, 2, 3, 2, 3, 3, 2, 1, 3, 7, 6, 2, 1, 2, 2, 9, 3, 3, 4, 8, 4, 6, 1, 6, 8, 8, 8, 3, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Equals (49/64)*(668/729)*(15304/15625)*(116724/117649)*... inserting p= A000040 = 2, 3, 5, 7.. into the factor. Slightly larger than Product_{p=primes} (1-3/p^3) = 0.534566872085103888416775...

Examples

			0.678234491917391978035...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1-3/p^3+2/p^4+1/p^5-1/p^6 ; Digits := 130 : tm := 310 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 105; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s];
    LR = LinearRecurrence[{0, 0, 3, -2, -1, 1}, {0, 0, -9, 8, 5, -33}, 2 m0];
    r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-3/p^3+2/p^4+1/p^5-1/p^6) \\ Amiram Eldar, Mar 04 2021

Extensions

More digits from Jean-François Alcover, Apr 15 2016

A346419 a(n) is twice the coefficient of 1 in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).

Original entry on oeis.org

2, 4, 1, 10, 16, 2, 6, 20, 4, 3, 30, 8, 8, 2, 340, 1, 5, 394, 48, 10, 10, 4, 16, 5, 22, 3040, 2, 46, 70, 12, 12, 74, 50, 6, 64, 26, 6964, 20, 1, 48670, 96, 4, 2, 100, 3, 7, 10, 178, 30, 302, 198, 1060, 8, 39, 126, 16, 16, 130, 97684, 8, 25, 502, 6960, 2, 2136, 86, 4, 340, 9, 106, 160, 1, 18, 164, 5, 9, 20810
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nonSquares = Select[Range[72], !IntegerQ[Sqrt[#]]& ]; 2*NumberFieldFundamentalUnits[Sqrt[#]][[1, 2, 1]] & /@ nonSquares (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    for(n=1,30,if(!issquare(n),print1(abs(2*polcoeff(lift(bnfinit(x^2-n).fu[1]),0)),","))) /* Ralf Stephan, Sep 18 2013; updated by Michel Marcus, Jun 25 2020 */

A346420 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).

Original entry on oeis.org

2, 2, 1, 4, 6, 2, 2, 6, 2, 1, 8, 2, 2, 2, 78, 1, 1, 84, 10, 4, 2, 2, 6, 1, 4, 546, 2, 8, 12, 2, 2, 12, 8, 2, 10, 4, 1062, 6, 1, 7176, 14, 2, 2, 14, 1, 1, 4, 24, 8, 40, 26, 138, 2, 5, 16, 6, 2, 16, 11934, 2, 3, 60, 826, 2, 250, 10, 2, 78, 1, 12, 18, 1, 2, 18, 1, 1, 2244, 6, 84
Offset: 1

Views

Author

Keywords

Comments

The radical part is actually sqrt(A007913(A000037(n))) where A007913(m) is the squarefree part of m. - Michel Marcus, Jun 26 2020
How does this sequence differ from A048942? The definitions of both sequences are identical, but the second comment in A048942 states the terms differ from n = 14 onwards. - Felix Fröhlich, Jun 16 2022

Crossrefs

Programs

  • PARI
    f(n) = {if (issquare(n), return (0)); if (!issquarefree(n), m = core(n), m = n); my(u = abs(2*polcoeff(lift(bnfinit(x^2-m, 1).fu[1]), 0))); if (u^2==1, return (1)); if (u^2==4, return (sqrtint((u^2+4)/m));); if (u^2 < 4, return((u^2+4)/n)); my(v2 = [(u^2-4)/m, (u^2+4)/m]); sqrtint(vecmin(select(x->denominator(x)==1, v2)));}
    lista(nn) = apply(f, select(x->!issquare(x), [1..nn])); \\ Michel Marcus, Jun 25 2020; corrected Jun 16 2022

A104888 Class number of binary quadratic forms with radicand A005117(n).

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 4, 4, 1, 2, 4, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 1, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 4, 6, 4, 2, 2, 2, 4, 1, 4, 2, 2, 4, 1
Offset: 2

Views

Author

Steven Finch, May 03 2005

Keywords

Comments

The fundamental discriminant D and the radicand m (which is squarefree) are related via D=m if m=1 (mod 4) and D=4*m if m=2,3 (mod 4).

References

  • Hua Loo Keng, Introduction to Number Theory, Springer-Verlag, 1982, pp. 465-472.

Crossrefs

A319662 2-rank of the class group of Q(sqrt(-k)), k squarefree.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 0, 3, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 2, 0, 2
Offset: 1

Views

Author

Jianing Song, Sep 25 2018

Keywords

Comments

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003643).

Crossrefs

Real discriminant case: A317992.

Programs

  • Mathematica
    PrimeNu[#*If[Mod[-#, 4]>1, 4, 1]] - 1& /@ Select[Range[200], SquareFreeQ] (* Jean-François Alcover, Aug 02 2019 *)
  • PARI
    for(n=1, 200, if(issquarefree(n), print1(omega(n*if((-n)%4>1, 4, 1)) - 1, ", ")))
    
  • Sage
    def A319662_list(len):
        L = []
        for n in (1..len):
            if is_squarefree(n):
                if (-n) % 4 > 1: n <<= 2
                L.append(sloane.A001221(n) - 1)
        return L
    print(A319662_list(141)) # Peter Luschny, Oct 15 2018

Formula

a(n) = log_2(A003643(n)) = omega(A005117(n)) - 1, where omega(k) is the number of distinct prime divisors of k.
Previous Showing 31-40 of 56 results. Next