cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 207 results. Next

A179147 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 3 integral solutions.

Original entry on oeis.org

343, 1331, 9261, 10648, 12167, 17576, 39304, 42875, 54872, 85184, 97336, 250047, 357911, 405224, 636056, 778688, 857375, 970299, 1331000, 1815848, 2146689, 2515456, 3511808, 3723875, 3944312, 4913000, 5359375, 5545233, 6128487, 6751269, 6859000, 7762392, 8120601, 8365427, 8869743, 9393931
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Extensions

Edited and extended by Ray Chandler, Jul 11 2010
a(30)-a(36) from Max Alekseyev, Jun 01 2023

A179151 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 7 integral solutions.

Original entry on oeis.org

8, 5832, 125000, 175616, 185193, 941192, 1404928, 1481544, 3241792, 4251528, 11239424, 11852352, 20346417, 21952000, 35937000, 37933056, 38614472, 48228544, 89915392, 128024064, 135005697, 193100552
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Extensions

Edited and a(3)-a(22) from Ray Chandler, Jul 11 2010

A217982 T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal, vertical, diagonal or antidiagonal neighbors in a random 0..1 nXk array.

Original entry on oeis.org

2, 2, 2, 4, 2, 4, 6, 4, 4, 6, 10, 6, 16, 6, 10, 16, 10, 36, 36, 10, 16, 26, 16, 100, 98, 100, 16, 26, 42, 26, 256, 362, 362, 256, 26, 42, 68, 42, 676, 1180, 1942, 1180, 676, 42, 68, 110, 68, 1764, 4046, 8872, 8872, 4046, 1764, 68, 110, 178, 110, 4624, 13594, 43258, 54504
Offset: 1

Views

Author

R. H. Hardin Oct 16 2012

Keywords

Comments

Table starts
...2...2.....4.......6........10.........16...........26............42
...2...2.....4.......6........10.........16...........26............42
...4...4....16......36.......100........256..........676..........1764
...6...6....36......98.......362.......1180.........4046.........13594
..10..10...100.....362......1942.......8872........43258........205446
..16..16...256....1180......8872......54504.......363728.......2347480
..26..26...676....4046.....43258.....363728......3375350......30097566
..42..42..1764...13594....205446....2347480.....30097566.....368335390
..68..68..4624...46052....986288...15361400....272859916....4595712084
.110.110.12100..155494...4714274...99957900...2457033362...56890420330
.178.178.31684..525730..22573862..651962620..22187715406..706581935362
.288.288.82944.1776548.108013892.4248252712.200128757472.8763874097740

Examples

			Some solutions for n=3 k=4
..0..0..0..0....0..0..1..1....0..0..0..1....1..1..1..1....1..1..0..0
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..0..1....1..1..0..0
..1..1..1..1....0..0..1..1....1..1..1..1....0..0..0..1....1..1..1..1
		

Crossrefs

Columns 1 and 2 are A006355(n+1)
Column 3 is A206981(n-1)

A330482 Earliest start of a run of n numbers divisible by a sixth power larger than one.

Original entry on oeis.org

64, 16767, 26890623, 1507545109375, 777562026420218750, 283435321166212288109372
Offset: 1

Views

Author

Jud McCranie, Dec 16 2019

Keywords

Comments

De Konnick's book gives probable terms a(5)=777562026420218750 and a(6)=283435321166212288109372.

Examples

			26890623 is divisible by 3^6, 26890624 is divisible by 2^6, and 26890625 is divisible by 5^6.  This is the smallest number with this property, so a(3) = 26890623.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(5) from Giovanni Resta, Dec 17 2019
a(6) from Giovanni Resta, Dec 19 2019

A343286 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(k^6).

Original entry on oeis.org

1, 64, 729, 6176, 15625, 93312, 117649, 570048, 797526, 2000000, 1771561, 10474272, 4826809, 15059072, 22781250, 51231248, 24137569, 119066112, 47045881, 224500000, 171532242, 226759808, 148035889, 1085918400, 366218750, 617831552, 839677023, 1690380832, 594823321, 3645000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2021

Keywords

Crossrefs

A088017 Numbers not expressible as sum or difference of a nonzero cube and a nonzero square.

Original entry on oeis.org

6, 14, 16, 21, 27, 29, 32, 34, 42, 46, 51, 58, 59, 62, 66, 69, 70, 75, 77, 78, 84, 85, 86, 88, 90, 93, 96, 102, 103, 110, 111, 114, 115, 123, 125, 130, 133, 137, 140, 144, 149, 157, 158, 160, 162, 165, 166, 173, 176, 178, 179, 181, 182, 183, 187, 194, 201, 202, 203
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

Numbers n such that neither variant of Mordell's equation y^2=x^3+n (A054504) or y^2=x^3-n (A081121) has an integral solution with nonzero x and y. - Jack Brennen, Aug 28 2003

Examples

			16 is in the sequence because the only integral solution to Mordell's equation y^2 = x^3 +- 16 is (y=4,x=0). 49 is not in the sequence because it can also be expressed as 65^3-524^2.
		

Crossrefs

A130555 Numbers that are sums of sixth powers of two distinct primes.

Original entry on oeis.org

793, 15689, 16354, 117713, 118378, 133274, 1771625, 1772290, 1787186, 1889210, 4826873, 4827538, 4842434, 4944458, 6598370, 24137633, 24138298, 24153194, 24255218, 25909130, 28964378, 47045945, 47046610, 47061506, 47163530
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

This is to 6th powers as A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as sixth powers are cubes and the sum of cubes factorizations applies. There are semiprimes for values beginning a(1) = 793, a(2) = 15689 = 29 * 541, a(4) = 117713 = 53 * 2221, a(11) = 4826873 = 173 * 27901.

Examples

			a(1) = prime(1)^6 + prime(2)^6 = 2^6 + 3^6 = 64 + 729 = 793 = 13 * 61.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[Flatten[Table[Prime[n]^6 + Prime[k]^6, {n, 15}, {k, n - 1}]]], # <= Prime[15^6] &]
    Union[Total/@Subsets[Prime[Range[20]]^6,{2}]] (* Harvey P. Dale, Mar 11 2012 *)

Formula

{A001014(A000040(i)) + A001014(A000040(j)) for i > j}.

A134109 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 - n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 3
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081120(n)/2 if A081120(n) is even, (A081120(n)+1)/2 if A081120(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 and A134109 (this entry) dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 - 4 has solutions (y, x) = (2, 2) and (11, 5), hence a(4) = 2.
y^2 = x^3 - 5 has no solutions, hence a(5) = 0.
y^2 = x^3 - 8 has solution (y, x) = (0, 2), hence a(8) = 1.
y^2 = x^3 - 207 has 7 solutions (see A134106, A134107), hence a(207) = 7.
		

Crossrefs

Programs

  • Magma
    [ #{ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, -n])) }: n in [1..104] ];
  • Mathematica
    A081120 = Cases[Import["https://oeis.org/A081120/b081120.txt", "Table"], {, }][[All, 2]];
    a[n_] := With[{an = A081120[[n]]}, If[EvenQ[an], an/2, (an+1)/2]];
    a /@ Range[10000] (* Jean-François Alcover, Nov 28 2019 *)

A179136 Parameters n for which the elliptic curve y^2=x^3-n has rank 3.

Original entry on oeis.org

174, 307, 362, 431, 503, 516, 706, 713, 741, 755, 804, 984, 1048, 1075, 1173, 1187, 1192, 1208, 1236, 1259, 1315, 1356, 1439, 1478, 1588, 1607, 1668, 1712, 1724, 1727, 1763, 1777, 1812, 1902, 1951, 1966, 1999, 2001, 2036, 2071, 2181, 2188, 2198, 2219
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Cf. A002150 (rank 0), A002152 (rank 1), A002154 (rank 2), A031508, A179137 (rank 4).

A179137 Parameters n for which the elliptic curve y^2=x^3-n has rank 4.

Original entry on oeis.org

2351, 3896, 4799, 4827, 5417, 5835, 6691, 6843, 9748, 9967, 10723, 11559, 12163, 12394, 12891, 13971, 14188, 14907, 15049, 15544
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Cf. A002150 (rank 0), A002152 (rank 1), A002154 (rank 2), A179136 (rank 3).
Cf. A031508.

Programs

  • PARI
    for(k=1, 1e4, if(ellanalyticrank(ellinit([0, 0, 0, 0, -k]))[1]==4, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

a(11)-a(20) from Seiichi Manyama, Jul 07 2019
Previous Showing 71-80 of 207 results. Next