cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 207 results. Next

A071232 a(n) = (n^6 + n^3)/2.

Original entry on oeis.org

0, 1, 36, 378, 2080, 7875, 23436, 58996, 131328, 266085, 500500, 886446, 1493856, 2414503, 3766140, 5697000, 8390656, 12071241, 17009028, 23526370, 32004000, 42887691, 56695276, 74024028, 95558400, 122078125, 154466676, 193720086, 240956128, 297423855, 364513500
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2002

Keywords

Comments

Number of unoriented rows of length 6 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=36, there are 2^6=64 oriented arrangements of two colors. Of these, 2^3=8 are achiral. That leaves (64-8)/2=28 chiral pairs. Adding achiral and chiral, we get 36. - Robert A. Russell, Nov 14 2018
For n > 0, a(2n+1) is the number of non-isomorphic 8C_m-snakes, where m = 2n+1 or m = 2n (for n>=2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 16 2019

References

  • C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.
  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Row 6 of A277504.
Cf. A001014 (oriented), A085744 (chiral), A000578 (achiral).

Programs

  • GAP
    List([0..50], n -> (n^6 + n^3)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [(n^6 + n^3)/2: n in [0..50]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    Table[(n^6+n^3)/2,{n,0,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,36,378,2080,7875,23436},40] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    vector(50, n, n--; (n^6 + n^3)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [(n^6 + n^3)/2 for n in range(50)] # G. C. Greubel, Nov 15 2018
    

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=0, a(1)=1, a(2)=36, a(3)=378, a(4)=2080, a(5)=7875, a(6)=23436. - Harvey P. Dale, Nov 06 2011
G.f.: x*(28*x^4 + 155*x^3 + 147*x^2 + 29*x + 1)/(1-x)^7. - Colin Barker, Oct 12 2012
From Robert A. Russell, Nov 14 2018: (Start)
a(n) = (A001014(n) + A000578(n)) / 2 = (n^6 + n^3) / 2.
a(n) = A001014(n) - A085744(n) = A085744(n) + A000578(n).
G.f.: (Sum_{j=1..6} S2(6,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..3} S2(3,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..5} A145882(6,k) * x^k / (1-x)^7.
E.g.f.: (Sum_{k=1..6} S2(6,k)*x^k + Sum_{k=1..3} S2(3,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>6, a(n) = Sum_{j=1..7} -binomial(j-8,j) * a(n-j). (End)
E.g.f.: x*(2 +34*x +91*x^2 +65*x^3 +15*x^4 +x^5)*exp(x)/2. - G. C. Greubel, Nov 15 2018
a(n) = A000217(n^3), sum of the integers up to the n'th cube. - R. J. Mathar, Mar 11 2025

A089066 Number of distinct classes of permutations of length n under reversal, rotation and complement to n+1.

Original entry on oeis.org

1, 1, 1, 3, 8, 38, 192, 1320, 10176, 91296, 908160, 9985920, 119761920, 1556847360, 21794734080, 326920043520, 5230700052480, 88921882828800, 1600593472880640, 30411275613143040, 608225502973132800
Offset: 1

Views

Author

Ray Jerome, Dec 02 2003, Jul 17 2007

Keywords

Comments

Contribution from Olivier Gérard, Jul 31 2016: (Start)
Let us consider two permutations to be equivalent if they can be obtained from each other by reversal (12345->54321), cyclic rotation (12345->(23451,34512,45123,51234), n+1-complement (31254->35412), or a combination of those three transformations (they commute with each other). a(n) is the number of classes. It is strictly inferior to (n-1)! for n>1.
If rotation is replaced by addition of a constant modulo n, one obtains the same number of classes but not exactly the same permutations starting n=5.
(End)
Original explanation by R. Jerome : Generate all permutations of a string of length n, such as 1234, which has length 4; there are n!=24 of these. Now remove all that have cycles less than 4 characters long; if you only use cyclic notation and not array notation then of the n! possibly only (n-1)! need to be considered. Then calculate the Inverse, Vertical reflection, [VErt reflection inverse], Rotation by 180 degree and [ROt by 180 deg inverse]. If any of these already exist on the list then this permutation is not distinct. Items in []'s are unnecessary since VE(x)=V(I(x))=I(V(x))=R(x) and RO(x)=R(I(x))=I(R(x))=V(x). There are some that are rotationally symmetric and some that are vertically symmetric (only possible for even lengths), but the majority are nonsymmetric.

Examples

			Examples of permutations (notations of R. Jerome):
Rotationally symmetric: x1=R(x1)=124356=VE(x1), I(x1)=165342=V(x1)=RO(x1)
Vertically symmetric: x2=V(x2)=132645=RO(x2)), I(x2)=154623=R(x2)=VE(x2)
Nonsymmetric: x3=135264, I(x3)=146253, R(x3)=152463=VE(x3), V(x3)=136425=RO(x3)
a(4)=3: there are 3 distinct permutations of exactly length 4, out of a field of 4!=24 possible permutations. In cyclic notation they are designated (1234), (1243) and (1324). The others, (1342), (1423) and (1432), are equal to inverses, vertical mirror images or 180-degree rotations of those 3. The remaining 18 have cycles of length 1, 2 or 3, such as (143)(2) having a permutation of length 3 and a fixed cycle and (14)(23) having 2 permutations of length 2.
Examples of permutation representatives (from Olivier Gerard)
The representative is chosen to be the first of the class in lexicographic order.
n=4 both cases
1234,1243,1324
n=5 case rotation, reversal, complement
12345,12354,12435,12453,12534,13425,13524,14325
n=5 case translation mod, reversal, complement
12345,12354,12435,12453,12534,13425,13452,13524
		

Crossrefs

Apart from initial terms, same as A099030. - Ray Jerome, Feb 25 2005
Cf. A000939 (same idea under (rotation, addition mod n and reversal) or (rotation, addition mod n and complement)).
Cf. A000940 (same idea under (rotation, addition mod n, reversal and complement)).
Cf. A001710 (shifted, same idea under (rotation and reversal) or (addition mod n and complement)).
Cf. A002619 (same idea under (rotation and addition mod n)).
Cf. A262480 (same idea under (reversal and complement)).
cf. A275527 (same idea under (rotation and complement) or (addition mod n and reversal)).

Programs

  • Mathematica
    (* From the formula in A099030 *)
    a[n_] := If[n < 3, 1, 1/4 If[Mod[n, 2] == 0,((n - 1)! + (n/2 + 1) (n - 2)!!), ((n - 1)! + (n - 1)!!)]]; Table[a[n], {n, 1, 20}]

Extensions

Definition changed and cross-references added by Olivier Gérard, Jul 31 2016

A159750 Positive numbers y such that y^2 is of the form x^2+(x+47)^2 with integer x.

Original entry on oeis.org

37, 47, 65, 157, 235, 353, 905, 1363, 2053, 5273, 7943, 11965, 30733, 46295, 69737, 179125, 269827, 406457, 1044017, 1572667, 2369005, 6084977, 9166175, 13807573, 35465845, 53424383, 80476433, 206710093, 311380123, 469051025, 1204794713
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-12, a(1)) and (A118675(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (51+14*sqrt(2))/47 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3267+1702*sqrt(2))/47^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p= m^2 -2 a prime number in A028871, m>=2, the x values are given by the sequence defined by: a(n)= 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2)= 2*m +2, a(3)= 3*m^2 -10*m +8, a(4)= 3*p, a(5)= 3*m^2 +10*m +8, a(6)= 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n)= 6*b(n-3) -b(n-6) with b(1)=p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-12, a(1)) = (-12, 37) is a solution: (-12)^2+(-12+47)^2 = 144+1225 = 1369 = 37^2.
(A118675(1), a(2)) = (0, 47) is a solution: 0^2+(0+47)^2 = 2209 = 47^2.
(A118675(3), a(4)) = (85, 157) is a solution: 85^2+(85+47)^2 = 7225+17424 = 24649 = 157^2.
		

Crossrefs

Cf. A118675, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159751 (decimal expansion of (51+14*sqrt(2))/47), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).

Programs

  • Magma
    I:=[37,47,65,157,235,353]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {37,47,65,157,235,353}, 50] (* G. C. Greubel, May 22 2018 *)
  • PARI
    {forstep(n=-12, 100000000, [1, 3], if(issquare(2*n^2+94*n+2209, &k), print1(k, ",")))};
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(37+84*x+149*x^2+84*x^3+37*x^4)/(1 -6*x^3 +x^6)) \\ G. C. Greubel, May 22 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=37, a(2)=47, a(3)=65, a(4)=157, a(5)=235, a(6)=353.
G.f.: (1-x)*(37+84*x+149*x^2+84*x^3+37*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 47*A001653(k) for k >= 1.

A233075 Numbers that are midway between the nearest square and the nearest cube.

Original entry on oeis.org

6, 26, 123, 206, 352, 498, 1012, 1350, 1746, 2203, 2724, 3428, 4977, 5804, 6874, 8050, 9335, 10732, 12244, 13874, 17500, 19782, 21928, 24519, 26948, 29860, 32946, 35829, 39254, 42862, 50639, 54814, 59184, 63752, 69045, 74036, 79234, 85224, 90863, 97340, 104076
Offset: 1

Views

Author

Alex Ratushnyak, Dec 03 2013

Keywords

Comments

The sequence of roots of nearest squares begins: 2, 5, 11, 14, 19, 22, 32, 37, 42, 47, 52, 59, 71, 76, 83, 90, 97, 104, 111, 118, 132, ...
The sequence of cube roots of nearest cubes begins: 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, ... (Cf. A000037)
The sequence of k-k2 (equals k3-k) begins: 2, 1, 2, 10, -9, 14, -12, -19, -18, -6, 20, -53, -64, 28, -15, -50, -74, -84, -77, -50, ...
If we allow k2=k3 then first missing terms are 0, 1, 64, 729, 4096, ... . - Zak Seidov, Dec 10 2013

Examples

			26 = 5^2 + 1 = 3^3 - 1.
352 = 19^2 - 9 = 7^3 + 9.
		

Crossrefs

Cf. A002760 (Squares and cubes).
Cf. A001014 (Additional terms if k2=k3 were allowed).

Programs

  • Java
    import java.math.*;
    public class A233075 {
      public static void main (String[] args) {
        for (long k = 1; ; k++) { // ok for small k's
          long r2=(long)Math.sqrt(k), r3=(long)Math.cbrt(k);
          long b2=r2*r2, a2=b2+r2*2+1; //squares below and above
          long b3=r3*r3*r3, a3=b3+3*r3*(r3+1)+1; //cubes below, above
          if ((b2+a3==k*2 && k-b2<=a2-k && a3-k<=k-b3) ||
              (b3+a2==k*2 && k-b3<=a3-k && a2-k<=k-b2))
                System.out.printf("%d, ", k);
        }
      }
    }
    
  • Mathematica
    max = 10^6; u = Union[Range[Ceiling[Sqrt[max]]]^2,Range[Ceiling[ max^(1/3) ]]^3]; Reap[Do[x = u[[k]]; y = u[[k+1]]; If[Not[IntegerQ[Sqrt[x]] && IntegerQ[Sqrt[y]]] && Not[IntegerQ[x^(1/3)] && IntegerQ[y^(1/3)]] && IntegerQ[m = (x+y)/2], Sow[m]], {k, 1, Length[u]-2}]][[2, 1]] (* Jean-François Alcover, Dec 03 2015 *)
    Module[{upto=150000,nns},nns=Union[Join[Range[Floor[Sqrt[upto]]]^2,Range[Floor[Surd[upto,3]]]^3]];Mean/@Select[Partition[nns,2,1],EvenQ[Total[#]]&]] (* Harvey P. Dale, Nov 06 2017 *)
  • PARI
    list(lim)=my(v=List(),m=2,n=2,m2=4,n3=8,s=12); lim*=2; while(s <= lim, if(s%2==0 && m2!=n3 && abs(s/2-m2)<=abs(s/2-(m-1)^2) && abs(s/2-m2)<=abs(s/2-(m+1)^2) && abs(s/2-m2)<=abs(s/2-(n-1)^3) && abs(s/2-m2)<=abs(s/2-(n+1)^3), listput(v,s/2)); if(m2n3, n3=n++^3, m2=m++^2; n3=n++^3); s=m2+n3); Vec(v) \\ Charles R Greathouse IV, Jul 29 2016
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr + b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    a=[]
    for c in range(1, 10000):
        cube = c*c*c
        srB = isqrt(cube)
        srB2= srB**2
        if srB2==cube: continue
        if ((srB2^cube)&1)==0:
            n = (srB2+cube)//2
        else:
            n = (srB2+2*srB+1+cube)//2
        a.append(n)
    print(a)
    

A240930 a(n) = n^7 - n^6.

Original entry on oeis.org

0, 0, 64, 1458, 12288, 62500, 233280, 705894, 1835008, 4251528, 9000000, 17715610, 32845824, 57921708, 97883968, 159468750, 251658240, 386201104, 578207808, 846825858, 1216000000, 1715322420, 2380977984, 3256789558, 4395368448, 5859375000, 7722894400, 10072932714
Offset: 0

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

For n>1 number of 7-digit positive integers in base n.

Crossrefs

Programs

  • Magma
    [n^7-n^6 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
  • Maple
    A240930:=n->n^7-n^6: seq(A240930(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Table[n^7 - n^6, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
    CoefficientList[Series[2 (32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    vector(100, n, (n-1)^7 - (n-1)^6) \\ Derek Orr, Aug 03 2014
    

Formula

a(n) = n^6*(n-1) = n^7 - n^6.
a(n) = A001015(n) - A001014(n).
G.f.: 2*(32*x^2 + 473*x^3 + 1208*x^4 + 718*x^5 + 88*x^6 + x^7)/(x - 1)^8. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 6 - Sum_{k=2..6} zeta(k). - Amiram Eldar, Jul 05 2020

A271106 Number of ordered ways to write n as x^6 + 3*y^3 + z^3 + w*(w+1)/2, where x and y are nonnegative integers, and z and w are positive integers.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 3, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 4, 3, 3, 4, 5, 3, 2, 4, 4, 3, 2, 4, 3, 2, 2, 1, 2, 3, 4, 3, 2, 1, 1, 2, 4, 4, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 1, 5, 5, 5, 3, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 30 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 4, 6, 9, 13, 16, 20, 21, 24, 25, 44, 50, 51, 65, 84, 189, 290, 484, 616, 664, 680, 917, 1501, 1639, 3013.
Based on our computation, we also formulate the following general conjecture.
General Conjecture: Let T(w) = w*(w+1)/2. We have {P(x,y,z,w): x,y,z,w = 0,1,2,...} = {0,1,2,...} for any of the following polynomials P(x,y,z,w): x^3+y^3+c*z^3+T(w) (c = 2,3,4,6), x^3+y^3+c*z^3+2*T(w) (c = 2,3), x^3+b*y^3+3z^3+3*T(w) (b = 1,2), x^3+2y^3+3z^3+w(5w-1)/2, x^3+2y^3+3z^3+w(5w-3)/2, x^3+2y^3+c*z^3+T(w) (c = 2,3,4,5,6,7,12,20,21,34,35,40), x^3+2y^3+c*z^3+2*T(w) (c = 3,4,5,6,11), x^3+2y^3+c*z^3+w^2 (c = 3,4,5,6), x^3+2y^3+4z^3+w(3w-1)/2, x^3+2y^3+4z^3+w(3w+1)/2, x^3+2y^3+4z^3+w(2w-1), x^3+2y^3+6z^3+w(3w-1)/2, x^3+3y^3+c*z^3+T(w) (c = 3,4,5,6,10,11,13,15,16,18,20), x^3+3y^3+c*z^3+2*T(w) (c = 5,6,11), x^3+4y^3+c*z^3+T(w) (c = 5,10,12,16), x^3+4y^3+5z^3+2*T(w), x^3+5y^3+10z^3+T(w), 2x^3+3y^3+c*z^3+T(w) (c = 4,6), 2x^3+4y^3+8z^3+T(w), x^4+y^3+3z^3+w(3w-1)/2, x^4+y^3+c*z^3+T(w) (c = 2,3,4,5,7,12,13), x^4+y^3+c*z^3+2*T(w) (c = 2,3,4,5), x^4+y^3+2z^3+w^2, x^4+y^3+4z^3+2w^2, x^4+2y^3+c*z^3+T(w) (c = 4,5,12), x^4+2y^3+3z^3+2*T(w), 2x^4+y^3+2z^3+w(3w-1)/2, 2x^4+y^3+c*z^3+T(w) (c = 1,2,3,4,5,6,10,11), 2x^4+y^3+c*z^3+2*T(w) (c = 2,3,4), 2x^4+2y^3+c*z^3+T(w) (c = 3,5), 3x^4+y^3+c*z^3+T(w) (c = 1,2,3,4,5,11), 3x^4+y^3+2z^3+2*T(w), 3x^4+y^3+2z^3+w^2, 3x^4+y^3+2z^3+w(3w-1)/2, 4x^4+y^3+c*z^3+T(w) (c = 2,3,4,6), 4x^4+y^3+2z^3+2*T(w), 5x^4+y^3+c*z^3+T(w) (c = 2,4), a*x^4+y^3+2z^3+T(w) (a = 6,20,28,40), 6x^4+y^3+2z^3+2*T(w), 6x^4+y^3+2z^3+w^2, a*x^4+y^3+3z^3+T(w) (a = 6,8,11), 8x^4+2y^3+4z^3+T(w), x^5+y^3+c*z^3+T(w) (c = 2,3,4), x^5+2y^3+c*z^3+T(w) (c = 3,6,8), 2x^5+y^3+4z^3+T(w), 3x^5+y^3+2z^3+T(w), 5x^5+y^3+c*z^3+T(w) (c = 2,4), x^6+y^3+3z^3+T(w), x^7+y^3+4z^3+T(w), x^4+2y^4+z^3+w^2, x^4+2y^4+2z^3+T(w), x^4+b*y^4+z^3+T(w) (b = 2,3,4), 2x^4+3y^4+z^3+T(w), a*x^5+y^4+z^3+T(w) (a = 1,2), x^5+2y^4+z^3+T(w).
The polynomials listed in the general conjecture should exhaust all those polynomials P(x,y,z,w) = a*x^i+b*y^j+c*z^k+w*(s*w+/-t)/2 with {P(x,y,z,w): x,y,z,w = 0,1,2,...} = {0,1,2,...}, where a,b,c,s > 0, 0 <= t <= s, s == t (mod 2), i >= j >= k >= 3, a <= b if i = j, and b <= c if j = k.

Examples

			a(9) = 1 since 9 = 0^6 + 3*0^6 + 2^3 + 1*2/2.
a(24) = 1 since 24 = 1^6 + 3*0^6 + 2^3 + 5*6/2.
a(1501) = 1 since 1501 = 2^6 + 3*5^3 + 3^3 + 45*46/2.
a(1639) = 1 since 1639 = 0^6 + 3*6^3 + 1^3 + 44*45/2.
a(3013) = 1 since 3013 = 3^6 + 3*3^3 + 13^3 + 3*4/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-x^6-3*y^3-z^3],r=r+1],{x,0,n^(1/6)},{y,0,((n-x^6)/3)^(1/3)},{z,1,(n-x^6-3y^3)^(1/3)}];Print[n," ",r];Continue,{n,0,70}]

A271169 Number of ordered ways to write n as s^5 + t^5 + 2*u^5 + 3*v^5 + 4*w^5 + 5*x^5 + 7*y^5 + 14*z^5, where s,t,u,v,w,x,y,z are nonnegative integers with s <= t.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 6, 5, 7, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 8, 6, 8, 6, 7, 7, 6, 7, 5, 6, 4, 5, 4, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 4, 5, 4, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 4, 5, 3, 6, 4, 7, 5, 5, 7, 4, 8, 4, 7
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 31 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 1, 2602.
Note that 1+1+2+3+4+5+7+14 = 37. In 1964 J.-R. Chen proved that any natural number can be written as the sum of 37 fifth powers of nonnegative integers.
For k = 2,3,4,... define s(k) as the smallest positive integer s such that {a(1)*x(1)^k+...+a(s)*x(s)^k: x(1),...,x(s) = 0,1,2,...} = {0,1,2,...} for some positive integers a(1), ..., a(s), and t(k) as the least positive integer t such that {a(1)*x(1)^k+...+a(t)*x(t)^k: x(1),...,x(t) = 0,1,2,...} = {0,1,2,...} for some positive integers a(1), ..., a(t) with a(1)+...+a(t) = g(k), where g(.) is given by A002804. Then s(k) <= t(k) <= g(k). Part (iii) of the conjecture in A271099 implies that t(k) <= 2k-1 for k > 2. It is easy to see that s(2) = t(2) = 4. Our computation suggests that s(3) = t(3) = 5, s(4) = t(4) = 7, s(5) = t(5) = 8 (which is smaller than 2*5-1), and s(6) = t(6) = 10. We conjecture that s(k) = t(k) for any integer k > 1, and that each natural number can be written as x(1)^6+x(2)^6+x(3)^6+2*x(4)^6+3*x(5)^6+5*x(6)^6+6*x(7)^6+10*x(8)^6+18*x(9)^6+26*x(10)^6, where x(1),x(2),...,x(10) are nonnegative integers. Note that 1+1+1+2+3+5+6+10+18+26 = 73 = g(6).
We also conjecture that any natural number can be written as s^5+t^5+2*u^5+3*v^5+4*w^5+6*x^5+8*y^5+12*z^5, with s,t,u,v,w,x,y,z nonnegative integers. Note that 1+1+2+3+4+6+8+12 = 37 = g(5). - Zhi-Wei Sun, Apr 04 2016

Examples

			a(1) = 1 since 1 = 0^5 + 1^5 + 2*0^5 + 3*0^5 + 4*0^5 + 5*0^5 + 7*0^5 + 14*0^5.
a(2602) = 1 since 2602 = 0^5 + 1^5 + 2*4^5 + 3*2^5 + 4*1^5 + 5*1^5 + 7*0^5 + 14*2^5.
		

References

  • J.-R. Chen, Waring's Problem for g(5)=37, Sci. Sinica 13(1964), 1547-1568.

Crossrefs

Programs

  • Mathematica
    FQ[n_]:=FQ[n]=IntegerQ[n^(1/5)]
    Do[r=0;Do[If[FQ[n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5-s^5],r=r+1],{z,0,(n/14)^(1/5)},{y,0,((n-14z^5)/7)^(1/5)},{x,0,((n-14z^5-7y^5)/5)^(1/5)},{w,0,((n-14z^5-7y^5-5x^5)/4)^(1/5)},{v,0,((n-14z^5-7y^5-5x^5-4w^5)/3)^(1/5)},{u,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5)/2)^(1/5)}, {s,0,((n-14z^5-7y^5-5x^5-4w^5-3v^5-2u^5)/2)^(1/5)}];Print[n," ",r];Label[aa];Continue,{n,0,80}]

A343460 Number of ways to write n as x^6 + y^3 + z*(3*z+1)/2 + 2^k, where x and y are nonnegative integers, z is an integer and k is a positive integer.

Original entry on oeis.org

0, 1, 3, 5, 6, 5, 4, 4, 6, 9, 8, 6, 5, 5, 6, 7, 11, 11, 7, 5, 5, 5, 5, 8, 8, 5, 4, 5, 7, 7, 10, 11, 7, 8, 8, 8, 8, 9, 10, 8, 6, 7, 10, 10, 10, 7, 6, 7, 4, 5, 7, 6, 5, 4, 7, 8, 6, 5, 7, 8, 7, 6, 3, 5, 8, 12, 15, 13, 12, 10, 9, 11, 17, 18, 13, 9, 6, 9, 11, 16
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2021

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We have verified a(n) > 0 for n = 2..10^7.
Conjecture verified up to 10^10. - Giovanni Resta, Apr 18 2021

Examples

			a(2) = 1 with 2 = 0^6 + 0^3 + 0*(3*0+1)/2 + 2^1.
a(175) = 2 with 175 = 1^6 + 3^3 + (-10)*(3*(-10)+1)/2 + 2^1 = 2^6 + 4^3 + 3*(3*3+1)/2 + 2^5.
a(14553) = 1 with 14553 = 2^6 + 17^3 + (-80)*(3*(-80)+1)/2 + 2^4.
		

Crossrefs

Programs

  • Mathematica
    PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]];
    tab={};Do[r=0;Do[If[PenQ[n-x^6-y^3-2^k],r=r+1],{x,0,(n-1)^(1/6)},{y,0,(n-x^6-1)^(1/3)},{k,1,Log[2,n-x^6-y^3]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A351321 Least positive integer m such that m^6*n = u^6 + v^3 - (x^6 + y^3) for some nonnegative integers u,v,x,y with x^6 + y^3 <= m^6*n^2.

Original entry on oeis.org

1, 1, 1, 21, 6, 3, 1, 1, 1, 1, 7, 7, 3, 3, 3, 3, 2, 6, 1, 1, 1, 2, 6, 3, 5, 1, 1, 1, 1, 5, 2, 6, 12, 3, 1, 1, 1, 1, 1, 6, 6, 3, 3, 2, 1, 1, 4, 3, 2, 3, 3, 2, 7, 1, 1, 1, 1, 1, 3, 6, 1, 1, 1, 1, 1, 1, 4, 15, 3, 3, 1, 1, 1, 3, 4, 2, 3, 6, 3, 3, 2, 3, 1, 1, 3, 3, 3, 6, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 07 2022

Keywords

Comments

6-6-3-3 Conjecture: Each rational number can be written as u^6 - v^6 + x^3 - y^3 with u,v,x,y nonnegative rational numbers. Moreover, a(n) exists for any nonnegative integer n.
As a/b = (a*b^5)/b^6 for any integer a and nonzero integer b, the second assertion in the conjecture implies the first one.

Examples

			a(3) = 21 with 21^6*3 = 22^6 + 956^3 - (30^6 + 93^3) and 30^6 + 93^3 <= 21^6*3^2.
a(67) = 15 with 15^6*67 = 21^6 + 1091^3 - (15^6 + 848^3) and 15^6 + 848^3 <= 15^6*67^2.
a(564) = 14 with 14^6*564 = 69^6 + 4415^3 - (16^6 + 5746^3) and 16^6 + 5746^3 <= 14^6*564^2.
a(949) = 18 with 18^6*949 = 7^6 + 11784^3 - (11^6 + 11706^3) and 11^6 + 11706^3 <= 18^6*949^2.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[CQ[k*n+x^6+y^3-z^6],tab=Append[tab,m];Goto[aa]],
    {x,0,m*n^(1/3)},{y,0,(k*n^2-x^6)^(1/3)},{z,0,(k*n+x^6+y^3)^(1/6)}]; m=m+1;Goto[bb]; Label[aa],{n,0,100}];Print[tab]

A351341 Least nonnegative integer m such that n = x^4 + y^4 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 63, 3, 3, 4, 2, 2, 2, 4, 21, 37, 6, 1, 1, 0, 0, 4, 11, 7, 14, 5, 2, 2, 4, 8, 3, 3, 5, 1, 1, 0, 4, 4, 45, 5, 5, 11, 6, 6, 6, 32, 3, 7, 11, 3, 3, 6, 8, 8, 48, 13, 3, 3, 3, 6, 6, 31, 20, 93, 55, 3, 49, 33, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 69, 17, 29, 11, 1, 1, 0, 0, 5, 61, 29, 8, 5, 2, 2, 4, 21, 29, 51, 6, 1, 1, 0, 4, 85, 13
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 08 2022

Keywords

Comments

Conjecture 1: Let k be 4 or 5. Then each integer can be written as x^k + y^k - (z^3 + w^3) with x,y,z,w nonnegative integers.
Two examples for k = 5: -4 = 58^5 + 76^5 - (775^3 + 1397^3) and 14 = 40^5 + 67^5 - (125^3 + 1132^3).
Conjecture 2: Let k be among 4, 5, 6 and 7. Then any integer can be written as x^k + y^k - (z^2 + w^2) with x,y,z,w nonnegative integers.
Examples for k = 6, 7: 170 = 9^6 + 15^6 - (2114^2 + 2730^2) and 469 = 7^7 + 8^7 - (1001^2 + 1385^2).
Conjecture 3: For any integer k > 3, there are no nonnegative integers x,y,z,w such that x^k + y^k - (z^k + w^k) = 3.
See also another similar conjecture in A351338.

Examples

			a(60) = 93 with 60 = 25^4 + 27^4 - (49^3 + 93^3).
a(527) = 527 with 527 = 29^4 + 110^4 - (91^3 + 527^3).
a(2198) = 1704 with 2198 = 85^4 + 304^4 - (1539^3 + 1704^3).
a(4843) = 1965 with 4843 = 142^4 + 338^4 - (1804^3 + 1965^3).
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=IntegerQ[n^(1/4)];
    tab={};Do[m=0;Label[bb]; k=m^3;Do[If[QQ[n+k+x^3-y^4], tab=Append[tab,m];Goto[aa]],{x,0,m},{y,0,((n+k+x^3)/2)^(1/4)}];m=m+1;Goto[bb];Label[aa],{n, 0, 100}];Print[tab]
Previous Showing 91-100 of 207 results. Next