cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 133 results. Next

A138973 a(n) = 8^n mod 7^n.

Original entry on oeis.org

0, 1, 15, 169, 1695, 15961, 26846, 450066, 5247614, 13156907, 226316077, 680627620, 13354327932, 65310761853, 328708074010, 1951441519231, 15611532153848, 158125187800385, 101848932467045, 7328445851378156, 35829776440278962, 286638211522231696
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), this sequence (k=8), A139733 (k=9).

Programs

  • Mathematica
    a[n_]:=PowerMod[8,n,7^n];Array[a,22,0] (* James C. McMahon, Jun 23 2025 *)
  • PARI
    a(n) = lift(Mod(8, 7^n)^n); \\ Michel Marcus, Feb 20 2018
  • Sage
    [power_mod(8,n,7^n) for n in range(0,22)] # Zerinvary Lajos, Nov 28 2009
    

A164640 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 8, 48, 64, 384, 512, 3072, 4096, 24576, 32768, 196608, 262144, 1572864, 2097152, 12582912, 16777216, 100663296, 134217728, 805306368, 1073741824, 6442450944, 8589934592, 51539607552, 68719476736, 412316860416
Offset: 1

Views

Author

Klaus Brockhaus, Aug 20 2009

Keywords

Comments

Interleaving of A001018 and A083233 without initial term 1.
Binomial transform is A164544. Third binomial transform is A038761.

Crossrefs

Cf. A001018 (powers of 8), A083233 ((3*8^n+(0)^n)/4), A164544, A038761.

Programs

  • Magma
    [ n le 2 select 5*n-4 else 8*Self(n-2): n in [1..26] ];
    
  • Mathematica
    LinearRecurrence[{0,8},{1,6},40] (* Harvey P. Dale, Nov 06 2013 *)
  • PARI
    a(n)=(7-(-1)^n)*2^(1/4*(6*n-15+3*(-1)^n)) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (7-(-1)^n)*2^(1/4*(6*n -15+3*(-1)^n)).
G.f.: x*(1+6*x)/(1-8*x^2).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 18 2009

A222935 T(n,k)=Sum of neighbor maps: number of nXk binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 nXk array.

Original entry on oeis.org

2, 2, 4, 8, 16, 8, 16, 48, 64, 16, 24, 256, 512, 232, 32, 64, 1024, 4000, 4096, 1024, 64, 128, 4096, 32760, 63488, 32768, 4096, 128, 232, 15820, 262104, 1047664, 1048352, 262144, 16224, 256, 512, 65536, 2097152, 16776992, 33553920, 16777216, 2097152
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Table starts
....2.......2.........8.........16..........24..........64.........128
....4......16........48........256........1024........4096.......15820
....8......64.......512.......4000.......32760......262104.....2097152
...16.....232......4096......63488.....1047664....16776992...268435456
...32....1024.....32768....1048352....33553920..1073741824.34358569712
...64....4096....262144...16777216..1073741824.68719413208
..128...16224...2097152..268435456.34359738368
..256...65536..16777216.4294962688
..512..262144.134217728
.1024.1047680
.2048

Examples

			Some solutions for n=3 k=4
..0..0..1..1....0..1..1..1....1..1..1..0....0..1..0..0....1..1..1..1
..0..0..1..1....0..0..1..0....0..1..0..0....0..1..1..1....1..1..0..1
..0..0..1..0....1..1..0..0....0..1..0..1....0..1..1..0....0..0..1..0
		

Crossrefs

Column 1 is A000079
Column 2 is A222381
Column 3 is A001018 except for a(2)
Row 1 is A220172

A239013 Exponents m such that the decimal expansion of 8^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 17, 24, 27, 43, 144, 342, 633, 653, 2642, 6966, 16124, 84595, 225177, 4069057, 4890280, 6298187, 39573326, 99250579, 242281125, 1007075831, 4705063695, 5439666500, 5741331846, 6168193506, 9297912451, 34411164318, 36390662612, 265816303567
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030704.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan C. Wechsler and Franklin T. Adams-Watters.
Not just three times A031142; although {99250579, 6168193506, 9297912451, 34411164318, 36390662612} are possible candidates.

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[8, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 200000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(29)-a(35) from Bert Dobbelaere, Jan 21 2019
a(36)-a(38) from Chai Wah Wu, Jan 18 2020

A288188 Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=8 data values.

Original entry on oeis.org

1, 8, -7, 64, -84, 21, 512, -896, 224, 196, -35, 4096, -8960, 2240, 3920, -350, -980, 35, 32768, -86016, 21504, 56448, -3360, -18816, 336, -5488, 1470, 1176, -21, 262144, -802816, 200704, 702464, -31360, -263424, 3136, -153664, 27440, 21952, -196, 38416, -1372, -3430, 7
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 16 2017

Keywords

Comments

Let SM_k = Sum( d_(t_1, t_2, t_3, ..., t_8)* eM_1^t_1 * eM_2^t_2 * ...*eM_8^t_8) summed over all length 8 integer partitions of k, i.e., 1*t_1+2*t_2+3*t_3+...+8*t_8=k, where SM_k are the averaged k-th power sum symmetric polynomials in 8 data (i.e., SM_k = S_k/8 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(8,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2, t_3, ..., t_8) form a triangle, with one row for each k value starting with k=1; the number of terms in successive rows is nondecreasing.
Row sums of positive entries give: 1,8,85,932,10291,114878,... Row sums of negative entries are always 1 less than corresponding row sums of positive entries.

Examples

			Triangle begins
     1;
     8,    -7;
    64,   -84,   21;
   512,  -896,  224,  196,  -35;
  4096, -8960, 2240, 3920, -350, -980, 35;
  ...
		

Crossrefs

Cf. A028297 (m=2), A287768 (m=3), A288199 (m=4), A288207 (m=5), A288211 (m=6), A288245 (m=7). See Girard-Waring A210258. T(n,1)=8^(n-1)=A001018(n).

Programs

  • Java
    // See Wojnar link.

A367248 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 7.

Original entry on oeis.org

0, 5, 111, 1601, 19095, 204545, 2045511, 19508081, 179752215, 1613908385, 14202967911, 123028446161, 1052237271735, 8907026785025, 74758478722311, 623053865857841, 5162154289325655, 42558224511290465, 349394287423788711, 2858263098464575121, 23311522539676521975
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366964.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21,-146,336},{0,5,111},21]

Formula

a(n) = 23*8^(n-1) - 41*7^(n-1) + 3*6^n.
a(n) = 21*a(n-1) - 146*a(n-2) + 336*a(n-3) for n > 3.
O.g.f.: x^2*(5 + 6*x)/((1 - 6*x)*(1 - 7*x)*(1 - 8*x)).
E.g.f.: (161*exp(8*x) - 328*exp(7*x) + 168*exp(6*x) - 1)/56.

A367249 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 8.

Original entry on oeis.org

0, 3, 79, 1323, 18175, 223323, 2555119, 27828363, 292407775, 2990349243, 29943991759, 294872615403, 2864776362175, 27525734996763, 262061152909999, 2475899571994443, 23240879960425375, 216963121865909883, 2015960236625789839, 18656492902684557483, 172056837889322101375
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366965.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{24,-191,504},{0,3,79},21]

Formula

a(n) = 17*9^(n-1) - 31*8^(n-1) + 2*7^n.
a(n) = 24*a(n-1) - 191*a(n-2) + 504*a(n-3) for n > 3.
O.g.f.: x^2*(3 + 7*x)/((1 - 7*x)*(1 - 8*x)*(1 - 9*x)).
E.g.f.: (136*exp(9*x) - 279*exp(8*x) + 144*exp(7*x) - 1)/72.

A367250 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 9.

Original entry on oeis.org

0, 1, 35, 703, 11231, 158311, 2062655, 25466743, 302423471, 3487593511, 39314599775, 435241463383, 4748453693711, 51186327429511, 546278900354495, 5781325731101623, 60750456603203951, 634502309615150311, 6592506388026870815, 68188442304165981463, 702543059232886986191
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366966.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{27,-242,720},{0,1,35},21]

Formula

a(n) = 9*10^(n-1) - 17*9^(n-1) + 8^n.
a(n) = 27*a(n-1) - 242*a(n-2) + 720*a(n-3) for n > 3.
O.g.f.: x^2*(1 + 8*x)/((1 - 8*x)*(1 - 9*x)*(1 - 10*x)).
E.g.f.: (81*exp(10*x) - 170*exp(9*x) + 90*exp(8*x) - 1)/90.

A060760 a(n) = 8^(n^2).

Original entry on oeis.org

1, 8, 4096, 134217728, 281474976710656, 37778931862957161709568, 324518553658426726783156020576256, 178405961588244985132285746181186892047843328
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 23 2001

Keywords

Comments

Number of n X n matrices over GF(8).

Crossrefs

Programs

Formula

a(n) = A001018(A000290(n)). - Michel Marcus, Jul 03 2018

Extensions

More terms from Olaf Voß, Feb 11 2008

A126985 Expansion of 1/(1+8*x*c(x)), c(x) the g.f. of Catalan numbers A000108.

Original entry on oeis.org

1, -8, 56, -400, 2840, -20208, 143664, -1021728, 7265240, -51665200, 367392656, -2612584928, 18578329456, -132112749920, 939467783520, -6680662171200, 47506922377560, -337827035002800, 2402325467002320, -17083203745473120, 121480558396908240, -863861754435010080
Offset: 0

Views

Author

Philippe Deléham, Mar 21 2007

Keywords

Comments

Hankel transform is (-8)^n.
Catalan transform of (-1)^n*A001018(n). - R. J. Mathar, Nov 11 2008

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(10-8*Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019
    
  • Maple
    c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+8*x*c),x=0,25): seq(coeff(ser,x,n),n=0..21); # Emeric Deutsch, Mar 24 2007
  • Mathematica
    CoefficientList[Series[2/(10-8*Sqrt[1-4*x]), {x,0,30}], x] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(2/(10-8*sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019
    
  • Sage
    (2/(10-8*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*(-9)^k.
G.f.: 2/(10 - 8*sqrt(1-4*x)). - G. C. Greubel, May 28 2019
D-finite with recurrence 9*n*a(n) +2*(14*n+27)*a(n-1) +128*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024

Extensions

More terms from Emeric Deutsch, Mar 24 2007
Previous Showing 41-50 of 133 results. Next