Original entry on oeis.org
1, 27, 567, 10935, 203391, 3720087, 67493007, 1219657095, 21996874431, 396331160247, 7137447668847, 128505439098855, 2313380333315871, 41643387865514007, 749603858371707087, 13493075341822822215
Offset: 0
-
CoefficientList[Series[1/((1-9x)(1-18x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-162},{1,27},30] (* Harvey P. Dale, Dec 01 2015 *)
A104094
Largest prime <= 9^n.
Original entry on oeis.org
7, 79, 727, 6553, 59029, 531383, 4782961, 43046623, 387420479, 3486784393, 31381059607, 282429536453, 2541865828309, 22876792454939, 205891132094623, 1853020188851807, 16677181699666513, 150094635296999111
Offset: 1
-
f:= n -> prevprime(9^n):
map(f, [$1..30]); # Robert Israel, Aug 12 2019
-
NextPrime[#,-1]&/@(9^Range[20]) (* Harvey P. Dale, Apr 21 2024 *)
-
g(n,b) = for(x=0,n,print1(precprime(b^x)","))
A134007
a(n) = 1^n + 3^n + 5^n + 7^n + 9^n.
Original entry on oeis.org
5, 25, 165, 1225, 9669, 79225, 665445, 5686825, 49208709, 429746905, 3779084325, 33407391625, 296515495749, 2639977136185, 23561123826405, 210669225531625, 1886405750358789, 16910575282247065, 151726863979595685
Offset: 0
a(3)=165 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 = 165.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq. 6.
- Index entries for linear recurrences with constant coefficients, signature (25, -230, 950, -1689, 945).
-
[1^n + 3^n + 5^n + 7^n + 9^n: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
-
Table[1^n+3^n+5^n+7^n+9^n,{n,0,30}]
A144073
Euler transform of powers of 9.
Original entry on oeis.org
1, 9, 126, 1623, 20583, 254493, 3091803, 36974025, 436377771, 5091463423, 58811218362, 673298882775, 7647050353038, 86229872235432, 966019964324004, 10757807941399023, 119146632352548516, 1312935665205028374, 14400230629085596621, 157253909597473608945
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->9^j)(n): seq(a(n), n=0..40);
-
nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(9^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
Original entry on oeis.org
0, 9, 162, 2187, 26244, 295245, 3188646, 33480783, 344373768, 3486784401, 34867844010, 345191655699, 3389154437772, 33044255768277, 320275094369454, 3088366981419735, 29648323021629456, 283512088894331673, 2701703435345984178, 25666182635786849691, 243153309181138576020
Offset: 0
A165427
a(1) = 1, a(2) = 9, a(n) = product of the previous terms for n >= 3.
Original entry on oeis.org
1, 9, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
Offset: 1
-
a[1]:= 1; a[2]:= 9; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n],{n,1, 12}] (* G. C. Greubel, Oct 19 2018 *)
-
{a(n) = if(n==1, 1, if(n==2, 9, prod(j=1,n-1, a(j))))};
for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018
Original entry on oeis.org
1, 73, 721, 6553, 59041, 531433, 4782961, 43046713, 387420481, 3486784393, 31381059601, 282429536473, 2541865828321, 22876792454953, 205891132094641, 1853020188851833, 16677181699666561, 150094635296999113
Offset: 1
-
[9^n-8: n in [1..20]];
-
CoefficientList[Series[(1 + 63 x)/(1 - 10 x + 9 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
LinearRecurrence[{10,-9},{1,73},20] (* Harvey P. Dale, May 22 2014 *)
A198478
a(n) = 9^n * n^9.
Original entry on oeis.org
0, 9, 41472, 14348907, 1719926784, 115330078125, 5355700839936, 193010051319183, 5777633090469888, 150094635296999121, 3486784401000000000, 73994897046174912819, 1457274373159131021312, 26955214582765006137717
Offset: 0
-
[9^n*n^9: n in [0..20]]
-
Table[9^n*n^9, {n, 0, 20}] (* G. C. Greubel, May 17 2022 *)
-
[9^n*n^9 for n in (0..20)] # G. C. Greubel, May 17 2022
A230540
a(n) = 2*n*3^(2*n-1).
Original entry on oeis.org
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
-
[2*n*3^(2*n-1): n in [0..20]];
-
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A270472
Expansion of g.f. (1-2*x)/(1-9*x).
Original entry on oeis.org
1, 7, 63, 567, 5103, 45927, 413343, 3720087, 33480783, 301327047, 2711943423, 24407490807, 219667417263, 1977006755367, 17793060798303, 160137547184727, 1441237924662543, 12971141321962887, 116740271897665983, 1050662447078993847, 9455962023710944623, 85103658213398501607
Offset: 0
-
CoefficientList[Series[(1 - 2 x)/(1 - 9 x), {x, 0, 20}], x] (* Michael De Vlieger, Mar 18 2016 *)
-
Vec((1-2*x)/(1-9*x) + O(x^30))
Comments