A319075
Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0
The corner of the square array is as follows:
A000079 A000244 A000351 A000420 A001020 A001022 A001026
A000012 1, 1, 1, 1, 1, 1, 1, ...
A000040 2, 3, 5, 7, 11, 13, 17, ...
A001248 4, 9, 25, 49, 121, 169, 289, ...
A030078 8, 27, 125, 343, 1331, 2197, 4913, ...
A030514 16, 81, 625, 2401, 14641, 28561, 83521, ...
A050997 32, 243, 3125, 16807, 161051, 371293, 1419857, ...
A030516 64, 729, 15625, 117649, 1771561, 4826809, 24137569, ...
A092759 128, 2187, 78125, 823543, 19487171, 62748517, 410338673, ...
A179645 256, 6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
Rows 0-13:
A000012,
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A092759,
A179645,
A179665,
A030629,
A079395,
A030631,
A138031.
Other rows n:
A030635 (n=16),
A030637 (n=18),
A137486 (n=22),
A137492 (n=28),
A139571 (n=30),
A139572 (n=36),
A139573 (n=40),
A139574 (n=42),
A139575 (n=46),
A173533 (n=52),
A183062 (n=58),
A183085 (n=60),
A261700 (n=100).
Columns 1-15:
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A133356
a(n) = 2*a(n-1) + 16*a(n-2) for n>1, a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 18, 52, 392, 1616, 9504, 44864, 241792, 1201408, 6271488, 31765504, 163874816, 835997696, 4293992448, 21963948032, 112631775232, 576686718976, 2955481841664, 15137951186944, 77563611840512, 397334442672128
Offset: 0
-
[n le 2 select 1 else 2*(Self(n-1) +8*Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 15 2022
-
LinearRecurrence[{2,16},{1,1},30] (* Harvey P. Dale, Dec 12 2012 *)
-
Vec((1-x)/(1-2*x-16*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
-
A133356=BinaryRecurrenceSequence(2,16,1,1)
[A133356(n) for n in range(41)] # G. C. Greubel, Oct 15 2022
A159530
Numerator of Hermite(n, 2/17).
Original entry on oeis.org
1, 4, -562, -6872, 947020, 19676144, -2658183224, -78869600288, 10439530923152, 406451155424320, -52680635240539424, -2560010219314727296, 324703437982090748608, 19055044633095311519488, -2363601454465048638962560, -163647826988867455371547136
Offset: 0
The denominators are the powers of 17,
A001026.
-
[Numerator((&+[(-1)^k*Factorial(n)*(4/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
-
Numerator[Table[HermiteH[n,2/17],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)
-
/* needs version >= 2.4 */
A159530(n)=numerator(polhermite(n,2/17)); /* Joerg Arndt, Apr 30 2011 */
A073213
Sum of two powers of 17.
Original entry on oeis.org
2, 18, 34, 290, 306, 578, 4914, 4930, 5202, 9826, 83522, 83538, 83810, 88434, 167042, 1419858, 1419874, 1420146, 1424770, 1503378, 2839714, 24137570, 24137586, 24137858, 24142482, 24221090, 25557426, 48275138, 410338674, 410338690, 410338962, 410343586, 410422194, 411758530, 434476242, 820677346
Offset: 0
T(2,0) = 17^2 + 17^0 = 290.
Table T(n,m) begins:
2;
18, 34;
290, 306, 578;
4914, 4930, 5202, 9826;
83522, 83538, 83810, 88434, 167042;
...
Sums of two powers of n:
A073423 (0),
A007395 (1),
A173786 (2),
A055235 (3),
A055236 (4),
A055237 (5),
A055257 (6),
A055258 (7),
A055259 (8),
A055260 (9),
A052216 (10),
A073211 (11),
A194887 (12),
A072390 (13),
A055261 (16),
A073214 (19),
A073215 (23).
-
Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
Union[Total/@Tuples[17^Range[0,10],2]] (* Harvey P. Dale, Apr 09 2015 *)
-
from math import isqrt
def A073213(n): return 17**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+17**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025
A383809
Consecutive states of a linear congruential pseudo-random number generator for Lisp 1985 when started at 1.
Original entry on oeis.org
1, 17, 38, 144, 189, 201, 154, 108, 79, 88, 241, 81, 122, 66, 118, 249, 217, 175, 214, 124, 100, 194, 35, 93, 75, 20, 89, 7, 119, 15, 4, 68, 152, 74, 3, 51, 114, 181, 65, 101, 211, 73, 237, 13, 221, 243, 115, 198, 103, 245, 149, 23, 140, 121, 49, 80, 105, 28
Offset: 1
- Sean A. Irvine, Table of n, a(n) for n = 1..125
- Richard P. Gabriel, Performance and Evaluation of Lisp Systems, MIT, 1985 (see p. 140).
- Stephen K. Park and Keith W. Miller, Random number generators: good ones are hard to find, Communications of the ACM, Vol 31, 10 (1988), 192-201.
- Index entries for sequences related to pseudo-random numbers.
- Index entries for linear recurrences with constant coefficients, order 125.
-
a:= proc(n) option remember; `if`(n<2, n,
irem(17*a(n-1), 251))
end:
seq(a(n), n=1..58); # Alois P. Heinz, May 21 2025
-
NestList[Mod[17*#, 251] &, 1, 100] (* Paolo Xausa, May 21 2025 *)
A013722
a(n) = 17^(2*n + 1).
Original entry on oeis.org
17, 4913, 1419857, 410338673, 118587876497, 34271896307633, 9904578032905937, 2862423051509815793, 827240261886336764177, 239072435685151324847153, 69091933913008732880827217
Offset: 0
Original entry on oeis.org
1, 34, 1156, 39304, 1336336, 45435424, 1544804416, 52523350144, 1785793904896, 60716992766464, 2064377754059776, 70188843638032384, 2386420683693101056, 81138303245565435904, 2758702310349224820736, 93795878551873643905024, 3189059870763703892770816
Offset: 0
A180701
Smallest power of 17 that begins with n.
Original entry on oeis.org
1, 289, 34271896307633, 4913, 582622237229761, 6975757441, 7961145753492658188015880378976844387030440651052782229932477774154576998240582422097, 83521, 9904578032905937
Offset: 1
-
With[{s=17^Range[0,80]},Table[First[Select[s,First[IntegerDigits[#]]==n&]], {n,9}]] (* Harvey P. Dale, Mar 24 2011 *)
A013806
a(n) = 17^(4*n+1).
Original entry on oeis.org
17, 1419857, 118587876497, 9904578032905937, 827240261886336764177, 69091933913008732880827217, 5770627412348402378939569991057, 481968572106750915091411825223071697, 40254497110927943179349807054456171205137
Offset: 0
A197351
a(0)=0, a(1)=1, a(2n)=17*a(n), a(2n+1)=a(2n)+1.
Original entry on oeis.org
0, 1, 17, 18, 289, 290, 306, 307, 4913, 4914, 4930, 4931, 5202, 5203, 5219, 5220, 83521, 83522, 83538, 83539, 83810, 83811, 83827, 83828, 88434, 88435, 88451, 88452, 88723, 88724, 88740, 88741, 1419857, 1419858, 1419874, 1419875
Offset: 0
-
[n: n in [0..1500000] | Set(IntegerToSequence(n, 17)) subset {0, 1}]; // Vincenzo Librandi, Jun 05 2012
-
Take[Union[Total/@Subsets[17^Range[0,20],5]],40] (* Harvey P. Dale, Dec 17 2011 *)
FromDigits[#,17]&/@Tuples[{0,1},5] (* Vincenzo Librandi, Jun 05 2012 *)
Comments