A048172
Number of labeled series-parallel graphs with n edges.
Original entry on oeis.org
1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1
- Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299
- Index entries for reversions of series
- Index entries for sequences related to posets
-
with(gfun):
f := series((ln(1+x)-x^2/(1+x)), x, 21):
egf := seriestoseries(f, 'revogf'):
seriestolist(egf, 'Laplace');
-
lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
-
h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
-
x='x+O('x^55);
s=-log(1-x)-x^2/(1-x);
A048174=Vec(serlaplace(serreverse(s)));
t=x+2*(1-cosh(x));
A058349=Vec(serlaplace(serreverse(t)));
A048172=A048174+A058349; A048172[1]-=1;
A048172 /* Joerg Arndt, Feb 04 2011 */
A342587
Triangle, read by rows: T(n,k) is the number of labeled order relations on n nodes in which the longest chain has k nodes (n>=1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199357704, 71310960, 11481120, 987840, 40320, 1, 243593040, 11012710470, 21774014640, 9501062760, 1781015040
Offset: 1
Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
1;
1, 2;
1, 12, 6;
1, 86, 108, 24;
1, 840, 2310, 960, 120;
1, 11642, 65700, 42960, 9000, 720;
1, 227892, 2583126, 2510760, 712320, 90720, 5040;
...
A055512
Lattices with n labeled elements.
Original entry on oeis.org
1, 1, 2, 6, 36, 380, 6390, 157962, 5396888, 243179064, 13938711210, 987858368750, 84613071940452, 8597251494954564, 1020353444641839854, 139627532137612581090, 21788453795572514675760, 3840596246648027262079472, 758435490711709577216754642
Offset: 0
Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
- Sean A. Irvine, Table of n, a(n) for n = 0..19 (terms 0..18 from David Wasserman)
- J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.
- Sean A. Irvine, Java program (github).
- J. Heitzig and J. Reinhold, Counting finite lattices, Algebra univers. 48, 43-53 (2002).
- D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, in: Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978), Ann. Discrete Math. 6 (1980), 243-249.
- Alan Veliz-Cuba and Reinhard Laubenbacher, Dynamics of semilattice networks with strongly connected dependency graph, Automatica (2019) Vol. 99, 167-174.
- Index entries for "core" sequences
A340264
T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling2(n - k + j, j). Triangle read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 1, 6, 8, 0, 1, 11, 24, 16, 0, 1, 20, 70, 80, 32, 0, 1, 37, 195, 340, 240, 64, 0, 1, 70, 539, 1330, 1400, 672, 128, 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256, 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512
Offset: 0
[0] 1;
[1] 0, 2;
[2] 0, 1, 4;
[3] 0, 1, 6, 8;
[4] 0, 1, 11, 24, 16;
[5] 0, 1, 20, 70, 80, 32;
[6] 0, 1, 37, 195, 340, 240, 64;
[7] 0, 1, 70, 539, 1330, 1400, 672, 128;
[8] 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256;
[9] 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512;
Alternating sum of row(n) is
A109747(n).
-
egf := exp(t*(exp(-x) - x - 1));
ser := series(egf, x, 22):
p := n -> coeff(ser, x, n);
seq(seq((-1)^n*n!*coeff(p(n), t, k), k=0..n), n = 0..10);
# Alternative:
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j), j=0..k):
seq(seq(T(n, k), k = 0..n), n=0..9); # Peter Luschny, Feb 09 2021
-
T[ n_, k_] := Sum[ Binomial[n, k-j] StirlingS2[n-k+j, j], {j, 0 ,k}]; (* Michael Somos, Jul 18 2021 *)
-
T(n, k) = sum(j=0, k, binomial(n, j)*stirling(n-j, k-j, 2)); /* Michael Somos, Jul 18 2021 */
A085628
Number of antisymmetric transitive binary relations on n labeled points.
Original entry on oeis.org
1, 2, 12, 152, 3504, 135392, 8321472, 784621952, 110521185024, 22789653765632, 6769730814753792, 2859584874712881152, 1699286839524775931904, 1407801166901961190203392, 1613567168628788544015286272, 2541721059997800475952740401152, 5470980000021882982488097199161344
Offset: 0
Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
Cf.
A079265 (unlabeled antisymmetric transitive relations),
A001035 (labeled partial orders),
A000798 (labeled reflexive transitive relations),
A006905 (labeled transitive relations).
A003425
n! times number of posets with n elements.
Original entry on oeis.org
1, 1, 6, 114, 5256, 507720, 93616560, 30894489360, 17407086641280, 16152167106391680, 23990233574783750400, 55735096448700749203200, 198720975339675515386598400, 1070118060127292955589511500800, 8585695098723146508385537345689600, 101432601341702692223559539854263552000
Offset: 0
- K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
- K. K.-H. Butler, The Number of Partially Ordered Sets, Journal of Combinatorial Theory (B) 13, 276-289 (1972).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A046908
Number of irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 1, 7, 97, 2251, 80821, 4305127, 332273257, 36630174931, 5711638291981, 1249898984911567, 381230073532620577, 161042140788424003291, 93667063572594041040421, 74610767840852891620692727, 80997478506602342803118178457, 119313601058907927882431190269731, 237541348427311374857037021264415741
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]; lg = Length[A001035];
B[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
A[x_] = 2 - 1/B[x];
CoefficientList[A[x] + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)
A280202
Number of topologies on an n-set X such that for all x in X there is a y in X such that x and y are topologically indistinguishable.
Original entry on oeis.org
1, 0, 1, 1, 10, 31, 361, 2164, 32663, 313121, 6199024, 86219497, 2225685925, 42396094690, 1414152064833, 35520966967269, 1517860883350266, 48936884016265947, 2659543345912283917, 107827798819822505332, 7409614386025588874195, 371626299919138199117981
Offset: 0
a(4) = 10 because letting X = {a,b,c,d} we have the trivial topology; {{},{b,c},{a,d},X} * 3; and {{},{a,b},X} *6.
A342589
T(n,k) is the number of posets of n labeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.
Original entry on oeis.org
1, 1, 2, 1, 6, 12, 1, 12, 60, 128, 18, 1, 20, 180, 880, 2090, 960, 100, 1, 30, 420, 3480, 17550, 47772, 43920, 15000, 1710, 140, 1, 42, 840, 10360, 84630, 452004, 1428868, 2094960, 1465170, 491540, 90594, 10080, 770
Offset: 1
The triangle starts:
1: 1
2: 1 2
3: 1 6 12
4: 1 12 60 128 18
5: 1 20 180 880 2090 960 100
6: 1 30 420 3480 17550 47772 43920 15000 1710 140
7: 1 42 840 10360 84630 452004 1428868 2094960 1465170 491540 90594 10080 770
A124776
Number of labeled partially ordered sets associated with compositions in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 9, 3, 6, 1, 28, 54, 60, 4, 36, 12, 24
Offset: 0
Composition number 11 is 2,1,1; there are 3 partial orders
associated with this (shown below); these can be labeled respectively
in 12, 24 and 24 ways, so a(11) = 12+24+24 = 60.
..O..*O..*..O
..|..*|..*./|
..O..*O..*O.|
./.\.*|..*|.|
O...O*O.O*O.O
The table starts:
1
1
1 2
1 9 3 6
Comments