cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A048172 Number of labeled series-parallel graphs with n edges.

Original entry on oeis.org

1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1

Views

Author

Keywords

Comments

Labeled N-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

References

  • Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.

Crossrefs

Cf. A000112 (unlabeled posets), A001035 (labeled posets), A003430 (unlabeled analog).

Programs

  • Maple
    with(gfun):
    f := series((ln(1+x)-x^2/(1+x)), x, 21):
    egf := seriestoseries(f, 'revogf'):
    seriestolist(egf, 'Laplace');
  • Mathematica
    lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
    m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
  • Maxima
    h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
  • PARI
    x='x+O('x^55);
    s=-log(1-x)-x^2/(1-x);
    A048174=Vec(serlaplace(serreverse(s)));
    t=x+2*(1-cosh(x));
    A058349=Vec(serlaplace(serreverse(t)));
    A048172=A048174+A058349;  A048172[1]-=1;
    A048172 /* Joerg Arndt, Feb 04 2011 */
    

Formula

a(n) = A058349(n) + A048174(n).
a(n) = A058349(n) + A058350(n) (n>=2).
Reference (by Ronald C. Read) gives generating functions.
E.g.f. is reversion of log(1+x)-x^2/(1+x).
a(n)=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1), h(n,k)=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1), n>0. - Vladimir Kruchinin, Sep 08 2010
a(n) ~ sqrt((5+3*sqrt(5))/10) * n^(n-1) / (exp(n) * (2 - sqrt(5) + log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Joerg Arndt, Feb 04 2011

A342587 Triangle, read by rows: T(n,k) is the number of labeled order relations on n nodes in which the longest chain has k nodes (n>=1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199357704, 71310960, 11481120, 987840, 40320, 1, 243593040, 11012710470, 21774014640, 9501062760, 1781015040
Offset: 1

Views

Author

R. J. Mathar and Brendan McKay, Mar 16 2021

Keywords

Comments

Corrects Comtet's table for k=4 and 5 in row n=8.

Examples

			Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
  1;
  1,      2;
  1,     12,       6;
  1,     86,     108,      24;
  1,    840,    2310,     960,    120;
  1,  11642,   65700,   42960,   9000,   720;
  1, 227892, 2583126, 2510760, 712320, 90720, 5040;
  ...
		

Crossrefs

Cf. A000142 (diagonal), A001035 (row sums), A055531 (k=2), A055532 (k=3), A055533 (subdiagonal), A055534 (subdiagonal), A081064, A342501 (connected).

A055512 Lattices with n labeled elements.

Original entry on oeis.org

1, 1, 2, 6, 36, 380, 6390, 157962, 5396888, 243179064, 13938711210, 987858368750, 84613071940452, 8597251494954564, 1020353444641839854, 139627532137612581090, 21788453795572514675760, 3840596246648027262079472, 758435490711709577216754642
Offset: 0

Views

Author

Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000

Keywords

Crossrefs

Cf. A006966, A001035. Main diagonal of A058159.

A340264 T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling2(n - k + j, j). Triangle read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 6, 8, 0, 1, 11, 24, 16, 0, 1, 20, 70, 80, 32, 0, 1, 37, 195, 340, 240, 64, 0, 1, 70, 539, 1330, 1400, 672, 128, 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256, 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512
Offset: 0

Views

Author

Peter Luschny, Jan 08 2021

Keywords

Comments

A006905(n) = Sum_{k=0..n} A001035(k) * T(n, k). - Michael Somos, Jul 18 2021
T(n, k) is the number of idempotent relations R on [n] containing exactly k strongly connected components such that the following conditional statement holds for all x, y in [n]: If x, y are in distinct strongly connected components of R then (x, y) is not in R. - Geoffrey Critzer, Jan 10 2024

Examples

			[0] 1;
[1] 0, 2;
[2] 0, 1,   4;
[3] 0, 1,   6,    8;
[4] 0, 1,  11,   24,    16;
[5] 0, 1,  20,   70,    80,    32;
[6] 0, 1,  37,  195,   340,   240,    64;
[7] 0, 1,  70,  539,  1330,  1400,   672,   128;
[8] 0, 1, 135, 1498,  5033,  7280,  5152,  1792,  256;
[9] 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512;
		

Crossrefs

Sum of row(n) is A000110(n+1).
Sum of row(n) - 2^n is A058681(n).
Alternating sum of row(n) is A109747(n).

Programs

  • Maple
    egf := exp(t*(exp(-x) - x - 1));
    ser := series(egf, x, 22):
    p := n -> coeff(ser, x, n);
    seq(seq((-1)^n*n!*coeff(p(n), t, k), k=0..n), n = 0..10);
    # Alternative:
    T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j), j=0..k):
    seq(seq(T(n, k), k = 0..n), n=0..9); # Peter Luschny, Feb 09 2021
  • Mathematica
    T[ n_, k_] := Sum[ Binomial[n, k-j] StirlingS2[n-k+j, j], {j, 0 ,k}]; (* Michael Somos, Jul 18 2021 *)
  • PARI
    T(n, k) = sum(j=0, k, binomial(n, j)*stirling(n-j, k-j, 2)); /* Michael Somos, Jul 18 2021 */

Formula

T(n, k) = (-1)^n * n! * [t^k] [x^n] exp(t*(exp(-x) - x - 1)).
n-th row polynomial R(n,x) = exp(-x)*Sum_{k >= 0} (x + k)^n * x^k/k! = Sum_{k = 0..n} binomial(n,k)*Bell(k,x)*x^(n-k), where Bell(n,x) denotes the n-th Bell polynomial. - Peter Bala, Jan 13 2022

Extensions

New name from Peter Luschny, Feb 09 2021

A085628 Number of antisymmetric transitive binary relations on n labeled points.

Original entry on oeis.org

1, 2, 12, 152, 3504, 135392, 8321472, 784621952, 110521185024, 22789653765632, 6769730814753792, 2859584874712881152, 1699286839524775931904, 1407801166901961190203392, 1613567168628788544015286272, 2541721059997800475952740401152, 5470980000021882982488097199161344
Offset: 0

Views

Author

Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004

Keywords

Crossrefs

Cf. A079265 (unlabeled antisymmetric transitive relations), A001035 (labeled partial orders), A000798 (labeled reflexive transitive relations), A006905 (labeled transitive relations).

Programs

Formula

a(n) = 2^n * A001035(n) = A000079(n) * A001035(n)
E.g.f.: A(2*x) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014

Extensions

2 more terms from Charles R Greathouse IV, Aug 31 2006

A003425 n! times number of posets with n elements.

Original entry on oeis.org

1, 1, 6, 114, 5256, 507720, 93616560, 30894489360, 17407086641280, 16152167106391680, 23990233574783750400, 55735096448700749203200, 198720975339675515386598400, 1070118060127292955589511500800, 8585695098723146508385537345689600, 101432601341702692223559539854263552000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of nonsingular elements in the semigroup B_n of all binary relations on [n]. A relation A in B_n is nonsingular iff it is regular and row rank(A) = column rank(A) = n. - Geoffrey Critzer, May 22 2022

References

  • K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
  • K. K.-H. Butler, The Number of Partially Ordered Sets, Journal of Combinatorial Theory (B) 13, 276-289 (1972).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000142(n) * A001035(n).

A046908 Number of irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 1, 7, 97, 2251, 80821, 4305127, 332273257, 36630174931, 5711638291981, 1249898984911567, 381230073532620577, 161042140788424003291, 93667063572594041040421, 74610767840852891620692727, 80997478506602342803118178457, 119313601058907927882431190269731, 237541348427311374857037021264415741
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

Cf. A046907.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]; lg = Length[A001035];
    B[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    A[x_] = 2 - 1/B[x];
    CoefficientList[A[x] + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(x) = 2-1/B(x), where B(x) is e.g.f. of A001035. - Vladeta Jovovic, Jan 10 2006

Extensions

More terms from Vladeta Jovovic, Jan 10 2006
a(16)-a(18) from A001035 by Jean-François Alcover, Jan 01 2020

A280202 Number of topologies on an n-set X such that for all x in X there is a y in X such that x and y are topologically indistinguishable.

Original entry on oeis.org

1, 0, 1, 1, 10, 31, 361, 2164, 32663, 313121, 6199024, 86219497, 2225685925, 42396094690, 1414152064833, 35520966967269, 1517860883350266, 48936884016265947, 2659543345912283917, 107827798819822505332, 7409614386025588874195, 371626299919138199117981
Offset: 0

Views

Author

Geoffrey Critzer, Dec 28 2016

Keywords

Comments

Equivalently a(n) is the number of topologies on an n-set X such that for all x in X there is a y in X such that x and y have exactly the same neighborhoods.

Examples

			a(4) = 10 because letting X = {a,b,c,d} we have the trivial topology; {{},{b,c},{a,d},X} * 3; and {{},{a,b},X} *6.
		

Crossrefs

Column k=0 of A280192.

Formula

E.g.f.: A(exp(x) - 1 - x) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..floor(n/2)} A008299(n,k)*A001035(k).

Extensions

a(19)-a(21) from Pontus von Brömssen, Apr 05 2023

A342589 T(n,k) is the number of posets of n labeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 1, 12, 60, 128, 18, 1, 20, 180, 880, 2090, 960, 100, 1, 30, 420, 3480, 17550, 47772, 43920, 15000, 1710, 140, 1, 42, 840, 10360, 84630, 452004, 1428868, 2094960, 1465170, 491540, 90594, 10080, 770
Offset: 1

Views

Author

R. J. Mathar, Mar 16 2021

Keywords

Examples

			The triangle starts:
  1: 1
  2: 1 2
  3: 1 6 12
  4: 1 12 60 128 18
  5: 1 20 180 880 2090 960 100
  6: 1 30 420 3480 17550 47772 43920 15000 1710 140
  7: 1 42 840 10360 84630 452004 1428868 2094960 1465170 491540 90594 10080 770
		

Crossrefs

Cf. A001035 (row sums), A002378 (k=1), A033486 (k=2?), A342447 (unlabeled), A342588 (connected).

A124776 Number of labeled partially ordered sets associated with compositions in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 3, 6, 1, 28, 54, 60, 4, 36, 12, 24
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
The k-th term of the composition is the number of objects with rank k. The rank of an object is one more than the maximum rank of any smaller object in the ordering (1 for a minimal element), or equivalently the size of the largest chain of which the object is the maximal element.

Examples

			Composition number 11 is 2,1,1; there are 3 partial orders
associated with this (shown below); these can be labeled respectively
in 12, 24 and 24 ways, so a(11) = 12+24+24 = 60.
..O..*O..*..O
..|..*|..*./|
..O..*O..*O.|
./.\.*|..*|.|
O...O*O.O*O.O
The table starts:
1
1
1 2
1 9 3 6
		

Crossrefs

Cf. A066099, A124775, A124777, A011782 (row lengths), A001035 (row sums).
Previous Showing 21-30 of 65 results. Next