cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 128 results. Next

A065886 Smallest square divisible by n!.

Original entry on oeis.org

1, 1, 4, 36, 144, 3600, 3600, 176400, 2822400, 25401600, 25401600, 3073593600, 110649369600, 18699743462400, 74798973849600, 1869974346240000, 29919589539840000, 8646761377013760000, 77820852393123840000, 28093327713917706240000, 112373310855670824960000
Offset: 0

Views

Author

Henry Bottomley, Nov 27 2001

Keywords

Examples

			a(10) = 25401600 since 10! = 3628800 and the smallest square divisible by this is 25401600 = 3628800*7 = 5040^2
		

Programs

  • Maple
    N:= 50: # to get a(0)..a(N)
    P:= select(isprime, [$2..N]):
    nP:= nops(P):
    V:= Vector(nP):
    A[0]:= 1:
    for n from 1 to N do
      for i from 1 to nP do V[i]:= V[i] + padic:-ordp(n,P[i]) od;
      A[n]:= mul(P[i]^(2*ceil(V[i]/2)),i=1..nP)
    od:
    seq(A[n],n=0..N); # Robert Israel, Jan 30 2017
  • Mathematica
    ssd[n_]:=Module[{nf=n!,k=1},While[!IntegerQ[Sqrt[k*nf]],k++];k*nf]; Array[ssd,20,0] (* Harvey P. Dale, Apr 29 2012 *)

Formula

a(n) = A053143(A000142(n)) = A065887(n)^2 = A000142(n)*A055204(n) = A001044(n)/A055071(n)

A067656 Numbers n such that n!*B(2n) is an integer, where B(2n) are the Bernoulli numbers.

Original entry on oeis.org

7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

Comments

A045979(n), Bernoulli numbers with denominators 6, are included in the sequence.
Also numbers n such that both n+1 and 2n+1 are not prime. - Alexander Adamchuk, Oct 05 2006

Crossrefs

Cf. A166602. - R. J. Mathar, Feb 14 2010

Programs

  • Mathematica
    Select[Range[2,1000],Numerator[ #(#+1)(2#+1)/6/#!^2]==1&] (* Alexander Adamchuk, Oct 05 2006 *)
    Select[Range[1000],!PrimeQ[ #+1]&&!PrimeQ[2#+1]&] (* Alexander Adamchuk, Oct 05 2006 *)

Formula

Also numbers n>1 such that A000330[n] = Sum[k^2,{k,1,n}] = n(n+1)(2n+1)/6 divides A001044[n] = Product[k^2,{k,1,n}] = (n!)^2. Also numbers n>1 such that Numerator[n(n+1)(2n+1)/6 /(n!)^2] = 1. - Alexander Adamchuk, Oct 05 2006

A162993 The second left hand column of triangle A162990.

Original entry on oeis.org

9, 144, 3600, 129600, 6350400, 406425600, 32920473600, 3292047360000, 398337730560000, 57360633200640000, 9693947010908160000, 1900013614137999360000, 427503063181049856000000, 109440784174348763136000000, 31628386626386792546304000000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Crossrefs

A001044 and A162994 are two other left hand columns.
A001710(n+1) equals the square root of a(n).

Programs

  • Mathematica
    Array[((#+1)!/2)^2 &, 20, 2] (* Paolo Xausa, Apr 01 2024 *)

Formula

a(n) = ((n+1)!/2)^2 for n = 2, 3, ... .
a(n) = A001710(n+1)^2.

A371898 Triangle read by rows: T(n, k) = n * k * (T(n-1, k-1) + T(n-1, k)) for k > 0 with initial values T(n, 0) = 1 and T(i, j) = 0 for j > i.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 15, 48, 36, 1, 64, 504, 1008, 576, 1, 325, 5680, 22680, 31680, 14400, 1, 1956, 72060, 510480, 1304640, 1382400, 518400, 1, 13699, 1036224, 12233340, 50823360, 94046400, 79833600, 25401600, 1, 109600, 16798768, 318469536, 2017814400, 5794790400, 8346240000, 5893171200, 1625702400
Offset: 0

Views

Author

Werner Schulte, Apr 11 2024

Keywords

Examples

			Lower triangular array starts:
n\k :  0      1        2         3         4         5         6         7
==========================================================================
  0 :  1
  1 :  1      1
  2 :  1      4        4
  3 :  1     15       48        36
  4 :  1     64      504      1008       576
  5 :  1    325     5680     22680     31680     14400
  6 :  1   1956    72060    510480   1304640   1382400    518400
  7 :  1  13699  1036224  12233340  50823360  94046400  79833600  25401600
  etc.
		

Crossrefs

Cf. A000012 (column 0), A007526 (column 1), A001044 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - j)*Binomial[k, j]*HypergeometricPFQ[{1, -n}, {}, -j], {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten  (* Peter Luschny, Apr 12 2024 *)
  • PARI
    T(n, k) = if(k==0, 1, if(k > n, 0, n*k*(T(n-1, k-1) + T(n-1, k))))

Formula

T(n, k) = Sum_{i=k..n} A131689(i, k) * n! / (n-i)!.
T(n, k) = n! * k! * (Sum_{i=0..n-k} A048993(n-i, k) / i!).
T(n, k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * A320031(n, i).
Conjecture: E.g.f. of column k is exp(t) * t^k * k! / (Prod_{i=0..k} (1 - i*t)).
Conjecture: Sum_{k=0..n} (-1)^(n-k) * T(n, k) = A000166(n).
T(n, k) = A371766(n, k) * A371767(n, k). - Peter Luschny, Apr 14 2024

A384043 a(n) = [x^n] Product_{k=1..n} (1 + k^2*x) / (1 - k^2*x).

Original entry on oeis.org

1, 2, 50, 4188, 735600, 221302710, 101667388082, 66218673102680, 58048466179356672, 65901249246347377770, 94061755750395244537250, 164863945136411230998746612, 348110204753572939058548570000, 871547135491620353615820806025918, 2552918049709989779004770502542335650
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k^2*x)/(1-k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 16.6871576653578743696262746377576281620174969944584774545888... and c = 0.1371163625236187865398447973928851799479072107076663329994...

A046032 a(n) = (n!)^2 - 1.

Original entry on oeis.org

0, 3, 35, 575, 14399, 518399, 25401599, 1625702399, 131681894399, 13168189439999, 1593350922239999, 229442532802559999, 38775788043632639999, 7600054456551997439999, 1710012252724199423999999, 437763136697395052543999999, 126513546505547170185215999999
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001044.

Programs

A060080 Scaled sums of squares.

Original entry on oeis.org

1, 5, 56, 1080, 31680, 1310400, 72576000, 5181926400, 463325184000, 50697529344000, 6663103856640000, 1035678099456000000, 187913434365296640000, 39357424864287129600000, 9424067526124476825600000, 2558178330075402338304000000, 781407199004850168791040000000
Offset: 1

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Crossrefs

See Comments section at A060074.

Programs

  • Magma
    [Factorial(n+1) * Factorial(n-1) * (2*n+1)/6: n in [1..20]]; // Vincenzo Librandi, Jul 05 2018
  • Mathematica
    Table[(n + 1)! (n - 1)! (2 n + 1) / 3!, {n, 1, 30}] (* Vincenzo Librandi Jul 04 2018 *)
  • PARI
    a(n) = { (n + 1)!*(n - 1)!*(2*n + 1)/6 } \\ Harry J. Smith, Jul 01 2009
    

Formula

a(n) = (Sum_{k=1..n} k^2)*((n-1)!)^2 = (n+1)!*(n-1)!*(2*n+1)/3!.
a(n) = A000330(n) * A001044(n-1).
From Amiram Eldar, May 03 2025: (Start)
Sum_{n>=1} 1/a(n) = 3 * BesselI(1, 2) (Pi * StruveL(0, 2) + 2) - 3 * BesselI(0, 2) * (Pi * StruveL(1, 2) + 2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 * BesselJ(1, 2) * (Pi * StruveH(0, 2) - 2) - 3 * BesselJ(0, 2) * (Pi * StruveH(1, 2) - 2). (End)

Extensions

Offset changed from 0 to 1 by Georg Fischer, May 09 2021

A092096 a(n) = Sum_{i=0,1,2,..; n-k*i >= -n} |n-k*i| for k=5.

Original entry on oeis.org

11, 12, 20, 20, 30, 31, 32, 45, 45, 60, 61, 62, 80, 80, 100, 101, 102, 125, 125, 150, 151, 152, 180, 180, 210, 211, 212, 245, 245, 280, 281, 282, 320, 320, 360, 361, 362, 405, 405, 450, 451, 452, 500, 500, 550, 551, 552, 605, 605, 660, 661, 662, 720, 720, 780
Offset: 6

Views

Author

Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004

Keywords

References

  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.

Crossrefs

Programs

  • Maple
    S := proc(n,k) local a,i ; a :=0 ; i := 0 ; while n-k*i >= -n do a := a+abs(n-k*i) ; i := i+1 ; od: RETURN(a) ; end: k := 5: seq(S(n,k),n=k+1..80) ; # R. J. Mathar, Feb 01 2008
  • Mathematica
    a[n_] := Sum[Abs[n-5i], {i, 0, Quotient[2n, 5]}];
    Table[a[n], {n, 6, 60}] (* Jean-François Alcover, Apr 29 2023 *)

Formula

Empirical g.f.: -x^6*(10*x^10-5*x^9-3*x^7-x^6-21*x^5+10*x^4+8*x^2+x+11) / ((x-1)^3*(x^4+x^3+x^2+x+1)^2). - Colin Barker, Jul 28 2013

Extensions

Edited and extended by R. J. Mathar, Feb 01 2008
Revised by N. J. A. Sloane, Jul 03 2017

A105350 Largest squared factorial dividing n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 36, 36, 576, 576, 518400, 518400, 518400, 518400, 25401600, 25401600, 1625702400, 1625702400, 131681894400, 131681894400, 13168189440000, 13168189440000, 1593350922240000, 1593350922240000, 229442532802560000, 229442532802560000
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2005

Keywords

Comments

a(n) = A001044(A056039(n)) = A056038(n)^2.
Whenever n > 1 is not in A056067, a(n) = A180064(n). - Andrey Zabolotskiy, Oct 19 2023

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[k = 1, Divisible[n!, k!^2], k++]; (k-1)!^2)
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 07 2018 *)

Extensions

Data and offset corrected by Jean-François Alcover, Aug 07 2018
Edited by Andrey Zabolotskiy, Oct 18 2023

A133401 Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.

Original entry on oeis.org

18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3

Views

Author

Jonathan Vos Post, Nov 25 2007

Keywords

Comments

Array T(n,k) = k-th polygorial(n,k) begins:
k | polygorial(n,k)
3 | 1 1 3 18 180 2700 56700 1587600 57153600
4 | 1 1 4 36 576 14400 518400 25401600 1625702400
5 | 1 1 5 60 1320 46200 2356200 164934000 15173928000
6 | 1 1 6 90 2520 113400 7484400 681080400 81729648000
7 | 1 1 7 126 4284 235620 19085220 2137544640 316356606720
8 | 1 1 8 168 6720 436800 41932800 5577062400 981562982400
9 | 1 1 9 216 9936 745200 82717200 12738448800 2598643555200
10 | 1 1 10 270 14040 1193400 150368400 26314470000 6104957040000

Examples

			a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18.
a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576.
a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
		

Crossrefs

Programs

  • Maple
    A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *)
    Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *)
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)

Formula

a(n) ~ Pi * n^(3*n-1) / (2^(n-2) * exp(2*n+2)). - Vaclav Kotesovec, Feb 20 2015

Extensions

Edited by Nathaniel Johnston, May 05 2011
Previous Showing 61-70 of 128 results. Next