A110041
a(n) = number of labeled graphs on n vertices (with no isolated vertices, multi-edges or loops) such that the degree of every vertex is at most 3.
Original entry on oeis.org
1, 0, 1, 4, 41, 512, 8285, 166582, 4054953, 116797432, 3912076929, 150190759240, 6532014077809, 318632936830136, 17286883399233149, 1035508343364348938, 68053563847088272945, 4879593083836366195728, 379847137967853770523937, 31960371880691511556886988
Offset: 0
Graphs listed by edgeset: a(3) = 4: {(1,2), (2,3)}, {(1,3), (2,3)}, {(1,3), (1,2)}, {(2,3), (1,2), (1,3)}.
- Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093) [Gives e.g.f.]
A144163
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges where each maximally connected subgraph is either a tree or a cycle.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 3, 1, 1, 6, 15, 20, 3, 1, 10, 45, 120, 150, 12, 1, 15, 105, 455, 1185, 1473, 70, 1, 21, 210, 1330, 5565, 14469, 18424, 465, 1, 28, 378, 3276, 19635, 81060, 213990, 280200, 3507, 1, 36, 630, 7140, 57393, 334656, 1385076, 3732300, 5029218, 30016
Offset: 0
T(4,3) = 20, because there are 20 simple graphs on 4 labeled nodes with 3 edges, where each maximally connected subgraph is either a tree or a cycle, 16 of these graphs consist of a single tree with 4 nodes and 4 consist of a cycle with 3 and a tree with 1 node:
.1-2. .1-2. .1.2. .1.2. .1-2. .1-2. .1-2. .1-2. .1-2. .1.2.
.|\.. ../|. ..\|. .|/.. .|... ...|. ../.. ..\.. .|.|. .|.|.
.4.3. .4.3. .4-3. .4-3. .4-3. .4-3. .4-3. .4-3. .4.3. .4-3.
.
.1.2. .1.2. .1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1-2.
.|/|. .|\|. ..X.. ..X|. ..X.. .|X.. ../|. .|\.. .|/.. ..\|.
.4.3. .4.3. .4.3. .4.3. .4-3. .4.3. .4-3. .4-3. .4.3. .4.3.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 3, 1;
1, 6, 15, 20, 3;
1, 10, 45, 120, 150, 12;
-
f:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n<=k then 0 elif k=n-1 then n^(n-2) else add(binomial(n-1,j) *f(j+1,j) *f(n-1-j,k-j), j=0..k) fi end:
c:= proc(n,k) option remember; local i,j; if k=0 then 1 elif k<0 or n
-
f[n_, k_] := f[n, k] = Which[k == 0, 1, k<0 || n <= k, 0, k == n-1, n^(n-2), True, Sum[Binomial[n-1, j]*f[j+1, j]*f[n-1-j, k-j], {j, 0, k}]]; c[n_, k_] := c[n, k] = Which[k == 0, 1 , k<0 || nJean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)
A338978
Number of labeled 5-regular graphs on 2n nodes.
Original entry on oeis.org
1, 0, 0, 1, 3507, 66462606, 2977635137862, 283097260184159421, 52469332407700365320163, 17647883828569858659972268092, 10148613081040117624319536901932188, 9494356410654311931931879706070629989407, 13859154719468565627065764000731047706917194485
Offset: 0
- Marni Mishna, Table of n, a(n) for n = 0..110 (first 51 terms from Brendan Mackay)
- Frédéric Chyzak and Marni Mishna, Differential equations satisfied by generating functions of 5-, 6-, and 7-regular labelled graphs: a reduction based approach, arXiv:2406.04753 [math.CO], 2024.
- Élie de Panafieu, Asymptotic expansion of regular and connected regular graphs, arXiv:2408.12459 [math.CO], 2024. See p. 9.
- Atabey Kaygun, Counting Graphs with a Prescribed Degree Sequence.
- Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
With interspersed zeros, column k=5 of
A059441.
A369931
Triangle read by rows: T(n,k) is the number of labeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 6, 12, 0, 0, 0, 1, 85, 70, 0, 0, 0, 0, 100, 990, 465, 0, 0, 0, 0, 45, 2805, 11550, 3507, 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016, 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884, 0, 0, 0, 0, 0, 1335, 222516, 4710300, 22467312, 24556140, 3026655
Offset: 1
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 3;
0, 0, 0, 6, 12;
0, 0, 0, 1, 85, 70;
0, 0, 0, 0, 100, 990, 465;
0, 0, 0, 0, 45, 2805, 11550, 3507;
0, 0, 0, 0, 10, 3595, 59990, 140420, 30016;
0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884;
...
The T(3,3) = 1 matrix is:
[0 1 1]
[1 0 1]
[1 1 0]
The T(4,4) = 3 matrices are:
[0 0 1 1] [0 1 0 1] [0 1 1 0]
[0 0 1 1] [1 0 1 0] [1 0 0 1]
[1 1 0 0] [0 1 0 1] [1 0 0 1]
[1 1 0 0] [1 0 1 0] [0 1 1 0]
-
G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
T(n)={my(r=Vec(substvec(serlaplace(G(n)), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i))}
A370059
Number of traceless symmetric binary matrices with 2n 1's and all row sums >= 2.
Original entry on oeis.org
1, 0, 0, 1, 3, 18, 156, 1555, 17907, 234031, 3414375, 54984258, 968680368, 18532158756, 382616109012, 8479409847277, 200776196593073, 5058600736907013, 135130222251100358, 3814891312969572209, 113492694557655580989, 3548800852807887882157, 116359373033373284971070
Offset: 0
The a(3) = 1 matrix is:
[0 1 1]
[1 0 1]
[1 1 0]
The a(4) = 3 matrices are:
[0 0 1 1] [0 1 0 1] [0 1 1 0]
[0 0 1 1] [1 0 1 0] [1 0 0 1]
[1 1 0 0] [0 1 0 1] [1 0 0 1]
[1 1 0 0] [1 0 1 0] [0 1 1 0]
Cf.
A001205 (row sums of matrices exactly 2).
-
G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
seq(n)={Vec(subst(Pol(serlaplace(G(n))), x, 1))}
A201013
Triangular array read by rows: T(n,k) is the number of 2-regular labeled graphs on n nodes that have exactly k connected components (cycles); n>=3, 1<=k<=floor(n/3).
Original entry on oeis.org
1, 3, 12, 60, 10, 360, 105, 2520, 987, 20160, 9576, 280, 181440, 99144, 6300, 1814400, 1104840, 107415, 19958400, 13262040, 1708245, 15400, 239500800, 171119520, 27042444, 600600, 3113510400, 2366076960, 437729292, 16186170, 43589145600, 34941291840, 7335055728, 382056675, 1401400
Offset: 3
1;
3;
12;
60, 10;
360, 105;
2520, 987;
20160, 9576, 280;
181440, 99144, 6300;
-
T:= proc(n, k) option remember; `if`(k=1, (n-1)!/2,
add(binomial(n-1, j-1) *T(j,1) *T(n-j, k-1), j=3..n-3))
end:
seq(seq(T(n, k), k=1..n/3), n=3..14); # Alois P. Heinz, Nov 25 2011
-
f[list_]:=Select[list,#>0&];Flatten[Drop[Map[f, a = Log[1/(1 - x)]/2 - x/2 - x^2/4; Range[0, 20]! CoefficientList[Series[Exp[y a], {x, 0, 20}], {x, y}]], 3]]
A202065
The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.
Original entry on oeis.org
1, 0, 3, 60, 2835, 219240, 25519725, 4169185020, 910363278825, 256123949281200, 90240816705714675, 38923077574032151500, 20174526711617730727275, 12373285262231460281715000, 8863077725980930704895768125, 7332455066541096999983523547500
Offset: 0
-
f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0,a(0)=1,a(1)=0},a(n),remember):
map(f, [$0..30]); # Robert Israel, Mar 02 2017
-
nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]]
Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* Benedict W. J. Irwin, May 24 2016 *)
A202081
The number of simple labeled graphs on n nodes whose connected components are cycles, stars, wheels, or paths.
Original entry on oeis.org
1, 1, 2, 8, 46, 298, 2206, 19009, 187076, 2053349, 24800484, 327067043, 4677505768, 72075818159, 1189985755128, 20952274850927, 391829421176768, 7755079821666945, 161926610838369418, 3556807008080385549, 81979632030102053376, 1978135038931568355707
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge 1999, problem 5.15
-
nn = 16; a = x/(2 (1 - x)) + x/2; b = x^4/4! + Sum[(n (n - 2)!/2) x^n/n!, {n, 5, nn}]; c = x Exp[x] - x^3/2 - x^2 - x; d = -x/2 - x^2/4; Range[0, nn]! CoefficientList[Series[Exp[a]*Exp[b]*Exp[c]*Exp[d]/(1 - x)^(1/2), {x, 0, nn}], x]
A211774
Number of rooted 2-regular labeled graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 3, 12, 60, 420, 3255, 28056, 270144, 2868840, 33293205, 419329020, 5697423732, 83069039508, 1293734268645, 21436030749840, 376516868504160, 6988441065717744, 136675039085498691, 2809247116432575420, 60543293881318183740, 1365186080156105513460
Offset: 0
-
egf:= x *diff(exp(-x/2-x^2/4)/sqrt(1-x), x):
a:= n-> n! * coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, May 18 2012
-
nn = 20; a = Log[1/(1 - x)]/2 - x/2 - x^2/4; Drop[Range[0, nn]! CoefficientList[Series[x D[Exp[a], x], {x, 0, nn}], x], 3]
A322706
Regular triangle read by rows where T(n,k) is the number of k-regular k-uniform hypergraphs spanning n vertices.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 12, 12, 1, 0, 1, 70, 330, 70, 1, 0, 1, 465, 11205, 11205, 465, 1, 0, 1, 3507, 505505, 2531200, 505505, 3507, 1, 0
Offset: 1
Triangle begins:
1
1 0
1 1 0
1 3 1 0
1 12 12 1 0
1 70 330 70 1 0
1 465 11205 11205 465 1 0
1 3507 505505 2531200 505505 3507 1 0
Row 4 counts the following hypergraphs:
{{1}{2}{3}{4}} {{12}{13}{24}{34}} {{123}{124}{134}{234}}
{{12}{14}{23}{34}}
{{13}{14}{23}{24}}
Cf.
A005176,
A058891,
A059441,
A295193,
A306021,
A319056,
A319189,
A319190,
A319612,
A321721,
A322704.
-
Table[Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]
Comments