cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 1775 results. Next

A157414 Decimal expansion of Sum_{q = semiprimes = A001358} 1/(q*2^q).

Original entry on oeis.org

0, 1, 8, 5, 5, 0, 2, 6, 6, 2, 7, 9, 9, 4, 9, 7, 0, 6, 5, 8, 9, 2, 6, 5, 4, 8, 5, 2, 8, 8, 2, 0, 4, 7, 7, 7, 4, 3, 0, 1, 6, 8, 9, 3, 1, 8, 6, 9, 2, 7, 5, 1, 2, 7, 0, 3, 2, 8, 2, 8, 9, 3, 0, 0, 3, 5, 0, 1, 5, 8, 8, 4, 7, 7, 6, 3, 7, 1, 6, 5, 7, 3, 8, 8, 0, 1, 5, 8, 5, 4, 6, 3, 6, 6, 7, 7, 0, 3, 8, 1, 7, 4, 1, 8, 3
Offset: 0

Views

Author

R. J. Mathar, Feb 28 2009

Keywords

Examples

			0.0185502662799497065892654852882047774... = 1/(4*2^4)+1/(6*2^6)+1/(9*2^9)+1/(10*2^10)+... = Sum_{i>=1} 1/(A001358(i)*2^A001358(i)).
		

Crossrefs

Cf. A001358.

Formula

A002162 = Sum_{n>=1} 1/(n*2^n) = 1/2 + A157413 + this_constant_here + equivalent terms of higher order k-almost primes.

A173477 Semiprimes having no representation of the form semiprime(n)-+n, where semiprime(n) = A001358(n).

Original entry on oeis.org

10, 15, 25, 26, 35, 38, 39, 58, 65, 82, 85, 87, 91, 94, 118, 119, 121, 123, 133, 134, 142, 143, 155, 166, 183, 185, 201, 202, 209, 213, 217, 226, 237, 253, 267, 274, 278, 287, 295, 298, 299, 301, 303, 305, 314, 319, 321, 339, 355, 362, 371, 377, 381, 395, 407, 413, 415, 417, 422, 427
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2010

Keywords

Examples

			Listing the first eight terms of A001358 gives us:
n: 1, 2, 3,  4,  5,  6,  7,  8, ...
   4, 6, 9, 10, 14, 15, 21, 22, ...
We see that 4 can be represented as 6-2, 6 can be represented as 4+2 or 9-3 or 10-4, 9 can be represented as 14-5 or 15-6, but 10 cannot be represented by any such sum or difference as 4+1, 6+2, 9+3, 14-5, 15-6, 21-7, and also any difference A001358(n)-n after that will miss it. Thus 10 is the first semiprime included in this sequence.
		

Crossrefs

Programs

  • Maple
    N:= 2000: # to use semiprimes <= N
    Primes:= select(isprime, [2,seq(i,i=3..N,2)]):
    Semiprimes:= select(`<=`,{seq(seq(Primes[i]*Primes[j],i=1..j),j=1..nops(Primes))},N):
    sort(convert(Semiprimes minus {seq}(i+Semiprimes[i],i=1..nops(Semiprimes)) minus {seq}(Semiprimes[i]-i,i=1..nops(Semiprimes))),list)); # Robert Israel, Dec 20 2015

Extensions

Corrected by D. S. McNeil, Nov 23 2010
Name clarified and Example section added by Antti Karttunen, Dec 20 2015

A174838 Numbers n such that semiprime(n)+1 is prime, where semiprime(n) is A001358.

Original entry on oeis.org

1, 2, 4, 8, 16, 21, 27, 35, 55, 58, 76, 84, 111, 113, 120, 143, 147, 155, 176, 183, 218, 252, 258, 265, 294, 304, 348, 377, 383, 387, 403, 424, 435, 444, 464, 525, 548, 582, 585, 593, 600, 633, 690, 694, 732, 787, 803, 810, 827, 841, 846, 877, 892, 900, 971
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 30 2010

Keywords

Comments

N is in the sequence iff semiprime(n) is of the form 2p where p is a Sophie Germain prime (A005384).

Examples

			a(1)=1 because semiprime(1)+1=5=prime, a(2)=2 because semiprime(2)+1=7=prime, a(3)=4 because semiprime(4)+1=11=prime.
		

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Apr 05 2010

A179463 Semiprimes A001358 containing at least one semiprime digit in base 10.

Original entry on oeis.org

4, 6, 9, 14, 26, 34, 39, 46, 49, 62, 65, 69, 74, 86, 91, 93, 94, 95, 106, 119, 129, 134, 141, 142, 143, 145, 146, 159, 161, 166, 169, 194, 206, 209, 214, 219, 226, 247, 249, 254, 259, 262, 265, 267, 274, 289, 291, 295, 298, 299, 309, 314, 319, 326, 329, 334, 339, 341
Offset: 1

Views

Author

Jonathan Vos Post, Jul 15 2010

Keywords

Comments

Semiprimes containing at least one 4, 6, or 9 digit base 10.
This is to semiprimes A001358 as A179336 is to primes A000040.
This properly includes the subset A107342 Semiprimes with semiprime digits.

Crossrefs

Cf. A107342 Semiprimes with semiprime digits (digits 4, 6, 9 only), A107665 Numbers with semiprime digits (digits 4, 6, 9 only), A107666 Primes with semiprime digits (digits 4, 6, 9 only), A111494, A111496, A111697, A108614 Semiprimes with non-semiprimes digits (no digits 4, 6, 9 in semiprimes), A179336.

Programs

  • Mathematica
    spdQ[n_]:=Module[{idn=IntegerDigits[n]},MemberQ[idn,4] || MemberQ[ idn,6] || MemberQ[ idn,9]]; Select[Select[Range[350],PrimeOmega[#]==2&],spdQ] (* Harvey P. Dale, Jun 24 2013 *)

Extensions

Corrected (a(37) added) by Harvey P. Dale, Jun 24 2013

A226834 Smallest semiprime (A001358) which is at the beginning of an arithmetic progression of n semiprimes whose largest term is as small as possible.

Original entry on oeis.org

4, 4, 6, 10, 10, 201, 133, 133, 635, 697, 2215, 2215, 4979, 2995, 13561, 22903, 1691, 5951, 72697, 72697, 72697, 172151, 172151, 1782371, 1782371, 3660743, 3660743, 3660743, 3660743, 13298267, 2235913, 41963249
Offset: 1

Views

Author

T. D. Noe, Jun 28 2013

Keywords

Comments

Smallest number in row A226833(n).

Crossrefs

Cf. A096003 (largest semiprime in row), A097824 (gaps).

A243428 Semiprimes A001358(n) such that A001358(n) + 2^n is also a semiprime.

Original entry on oeis.org

4, 6, 10, 14, 22, 25, 35, 39, 95, 123, 129, 177, 289, 309, 327, 355, 415, 445, 471, 497, 543, 689
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 05 2014

Keywords

Comments

Generated by n = 1, 2, 4, 5, 8, 9, 13, 15, 34, 42, 43, 57, 90, 99, 105, 112, 131, 136, 145, 153, 170, 184, ...

Examples

			4 is in this sequence because A001358(1) + 2^1 = 6 is also semiprime.
		

Crossrefs

Cf. A001358.

Programs

  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[ sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; SemiPrimePi[n_] := Sum[ PrimePi[ n/Prime[i]] - i + 1, {i, PrimePi[ Sqrt[ n]] }]; sp = 4; lst = {}; While[ sp < 1001, If[ PrimeOmega[sp + 2^SemiPrimePi@ sp] == 2, AppendTo[lst, sp]; Print@ sp]; sp = NextSemiPrime@ sp; c++]; lst (* Robert G. Wilson v, Jun 20 2014 *)
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358
    sp=list(700); s=[]; for(n=1, #sp, if(bigomega(sp[n]+2^n)==2, s=concat(s, sp[n]))); s \\ Colin Barker, Jun 05 2014

Extensions

One term inserted, and more terms from Colin Barker, Jun 05 2014

A257933 Prime p such that sqrt(p+2) is semiprime (A001358).

Original entry on oeis.org

79, 223, 439, 1087, 1223, 2399, 3023, 4759, 5927, 8647, 14159, 14639, 21023, 24023, 25919, 28559, 31327, 33487, 42023, 47087, 56167, 61007, 64007, 67079, 70223, 71287, 89399, 90599, 91807, 95479, 104327, 112223, 116279, 126023, 137639, 152879, 172223, 199807
Offset: 1

Views

Author

Vladimir Shevelev, May 13 2015

Keywords

Comments

The terms are not congruent to 1 (mod 10).
The sequence contains no Mersenne prime p=2^t-1. Since p > 79, t is an odd prime and p+2 = 2^t+1 is divisible by 3. So, since 2^t+1 should be square, 2^t+1 is divisible by 9, i.e., (2^t+1)/3 == 0 (mod 3). (1)
Note that either t=6k+1 or t=6m+5. In each case, (1) is impossible.
Indeed, if t=6k+1, then (2^t+1)/3 = (2*(4^k)^3+1)/3 = (2*(3+1)^(3*k)+1)/3 == (2*binomial(3*k,1)*3+2+1)/3 == 1(mod 3), and analogously in case t=6*m+5, (2^t+1)/3 == 2 (mod 3): a contradiction.

Examples

			Prime 79 is in the sequence because sqrt(79+2) = 9 = 3*3 which is semiprime.
Prime 1223 is in the sequence because sqrt(1223+2) = 35 = 5*7 which is semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@18000,PrimeOmega[Sqrt[#+2]]==2&]//Quiet (* Ivan N. Ianakiev, May 13 2015 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=isprime(n) && issquare(n+2,&n) && issemi(n) \\ Charles R Greathouse IV, May 13 2015
    
  • PARI
    list(lim)=my(v=List(), k=sqrt(lim+2), t); forprime(p=2, sqrt(k), forprime(q=p, k\p, if(isprime(t=(p*q)^2-2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, May 13 2015
    
  • Perl
    use ntheory ":all"; forprimes { say if is_power($+2,2) && scalar(factor(sqrtint($+2)))==2 } 1e7; # Dana Jacobsen, May 13 2015
    
  • Perl
    use ntheory ":all"; sub list { my($lim,$k,$t,$p,%v)=shift; $k=sqrt($lim+2); forprimes { $p=$; forprimes { $t=($p*$)**2-2; $v{$t}++ if is_prime($t); } $p,int($k/$p); } int(sqrt($k)); my @v=sort{$a<=>$b} keys %v; @v; } say for list(1e10); # Translation of PARI, Dana Jacobsen, May 13 2015

Formula

Trivially a(n) >> n^2 log^2 n/(log log n)^2. - Charles R Greathouse IV, May 13 2015

Extensions

More terms from Peter J. C. Moses, May 13 2015

A263349 a(n) = smallest number > a(n-1) such that a(n-1) + a(n) is a semiprime (A001358), a(1)=1.

Original entry on oeis.org

1, 3, 6, 8, 13, 20, 26, 29, 33, 36, 38, 39, 43, 44, 47, 48, 58, 60, 61, 62, 67, 74, 81, 85, 92, 93, 94, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 115, 120, 127, 132, 133, 134, 140, 147, 148, 150, 151, 152, 153, 156, 158, 161, 162, 164, 165
Offset: 1

Views

Author

Zak Seidov, Oct 15 2015

Keywords

Comments

Similar sequences with any other initial a(1) will eventually merge with case a(1)=1.

Examples

			1 + 3 = 4 = 2*2, 3 + 6 = 9 = 3*3, 6 + 8 = 14 = 2*7, etc.
		

Crossrefs

Programs

  • Mathematica
    s={a=1};Do[k=a+1;While[PrimeOmega[a+k]!=2,k++];AppendTo[s,a=k],{100}];s
  • PARI
    lista(nn) = {print1(a = 1, ", "); for (k=1, nn, na = a+1; while (bigomega(a+na) != 2, na++); a = na; print1(a, ", "););} \\ Michel Marcus, Oct 17 2015

A277343 a(1) is 4. a(n) is the least semiprime q (A001358) greater than p = a(n-1), such that p/q is a new minimum.

Original entry on oeis.org

4, 6, 10, 21, 46, 106, 247, 579, 1363, 3214, 7586, 17915, 42311, 99931, 236023, 557455, 1316638, 3109733, 7344803, 17347513, 40972678, 96772393, 228564417, 539840885, 1275037411, 3011480697, 7112745019, 16799424206, 39678162637, 93714913738, 221343037931, 522784885426, 1234753254431
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2016

Keywords

Comments

Inspired by and analogous to A265418.
p/q -> 0.423392190744304142156851442297311481582158896664...

Examples

			4/6 is 0.666... is a new low or minimum;
6/9 is 0.666... is not a new minimum, but;
6/10 is 0.600... is a new minimum;
10/21 is 0.476... is a new minimum;
21/46 is 0.456... is a new minimum;
... 522784885426/1234753254431 is 0.423... is a new minimum; etc.
		

Crossrefs

Programs

  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]];
    p = 4; q = 6; mx = 1; lst = {}; While[q < 10^15, r = p/q; If[r < mx, mx = r; AppendTo[lst, p]; p = q]; q = NextSemiPrime[Floor[q/r]]]; lst (* or *)
    f[lst_List] := Block[{p = lst[[-2]], q = lst[[-1]]}, Append[lst, NextSemiPrime[ Floor[q^2/p]]]]; lst = {4, 6}; lst = Nest[f, lst, 30]

A288517 Least integer k such that A001358(k) + A001358(k+1) is the product of exactly n prime factors (counting multiplicity).

Original entry on oeis.org

3, 1, 28, 4, 19, 39, 48, 89, 120, 551, 447, 589, 3707, 10137, 21644, 28456, 22998, 44494, 86132, 166930, 703448, 628371, 1220814, 1608668, 11153853, 6091437, 56676014, 268389220, 146153797, 193010987, 916382785, 738246947, 4702317172, 2830095027, 12627951809
Offset: 1

Views

Author

Zak Seidov, Jun 10 2017

Keywords

Examples

			n=1: k=3, A001358(3) + A001358(4) = 9 + 10 = 19 = A000040(8) (8th prime),
n=2: k=1, A001358(1)+A001358(2) = 4+6 = 10 = 2*5 = A001358(4) (4th semiprime),
n=11: k=447, A001358(447)+A001358(448) = 1535+1537 = 3072 = 2^10*3 = A069272(2) (2nd 11-almost prime).
		

Crossrefs

Extensions

a(21)-a(35) from Charles R Greathouse IV, Jun 10 2017
Previous Showing 81-90 of 1775 results. Next