cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 901 results. Next

A324669 a(n) is the least k>0 such that A001359(n)+k^2 is in A001359.

Original entry on oeis.org

6, 114, 162, 210, 24, 330, 6, 6, 18, 12, 30, 210, 6, 18, 120, 150, 330, 24, 6, 42, 30, 66, 96, 210, 180, 210, 42, 54, 60, 360, 6, 18, 630, 60, 210, 24, 30, 66, 24, 126, 30, 48, 1380, 24, 90, 102, 6, 30, 42, 18, 90, 90, 42, 54, 12, 36, 60, 186, 210, 12, 72, 24, 42, 24, 330, 60, 12
Offset: 2

Views

Author

J. M. Bergot and Robert Israel, Sep 03 2019

Keywords

Comments

Offset is 2 because 3+k^2 is never in A001359.
All terms are divisible by 6.
The generalized Bunyakovsky conjecture implies that a(n) always exists, for n >= 2.
a(n) = 6 if and only if A001359(n) is in A248367.

Examples

			a(3) = 114 because A001359(3)=11, 11+114^2=13007 is in A001359, and no smaller k works.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, {seq(i,i=3..10000,2)}):
    TP:= sort(convert(P intersect map(`-`,P,2),list)):
    f:= proc(p) local k;
    for k from 6 by 6 do if isprime(p + k^2) and isprime(p + k^2 + 2) then return k fi od
    end proc:
    map(f, TP[2..-1]);
  • Mathematica
    With[{s = Select[Prime@ Range[3, 332], PrimeQ[# + 2] &]}, Array[Block[{k = 1}, While[! AllTrue[s[[#]] + k^2 + {0, 2}, PrimeQ], k++]; k] &, Length@ s]] (* Michael De Vlieger, Sep 03 2019 *)

A340573 a(n) is the smallest lesser twin prime p from A001359 such that the distance to the previous lesser twin prime is 6*n.

Original entry on oeis.org

11, 29, 59, 641, 101, 347, 2309, 569, 1931, 521, 1787, 419, 1229, 1871, 3671, 2237, 6551, 1427, 21491, 1607, 12377, 4931, 1019, 23201, 809, 19697, 12539, 2549, 38921, 10709, 37547, 8819, 9239, 34031, 6089, 80447, 15581, 46049, 36341, 14867, 38237, 36779, 87509, 71261, 15137, 40427, 13679, 54917, 41141, 50891
Offset: 1

Views

Author

Artur Jasinski, Jan 12 2021

Keywords

Comments

Lesser twin primes (with the exception of prime 3) are congruent to 5 modulo 6, which implies that distances between successive pairs of twin primes are 6*k.

Examples

			a(1)=11 because 11 - 5 = 6*1.
a(2)=41 because 41 - 29 = 6*2.
a(3)=59 because 59 - 41 = 6*3.
		

Crossrefs

Programs

  • Mathematica
    Table[a[n] = 0, {n, 1, 10000}]; Table[
    b[n] = 0, {n, 1, 10000}]; qq = {}; prev = 5; Do[
    If[Prime[n + 1] - Prime[n] == 2, k = (Prime[n] - prev)/6;
      If[b[k] == 0, a[k] = Prime[n]; b[k] = 1]; prev = Prime[n]], {n, 5,
      10000}]; list = Table[a[n], {n, 1, 50}]
    (* Second program: *)
    pp = Select[Prime[Range[10^4]], PrimeQ[#+2]&];
    dd = Differences[pp];
    a[n_] := pp[[FirstPosition[dd, 6n][[1]]+1]];
    Array[a, 50] (* Jean-François Alcover, Jan 13 2021 *)

Formula

a(n) = A052350(n) + 6*n.

A350247 Positive integers k such that the concatenation of k and 11 is the lesser of a pair of twin primes (i.e., a term of A001359).

Original entry on oeis.org

3, 21, 27, 72, 90, 126, 183, 189, 192, 210, 216, 261, 267, 300, 315, 324, 342, 345, 360, 378, 387, 414, 477, 483, 540, 567, 633, 672, 681, 687, 714, 717, 744, 750, 777, 798, 828, 861, 870, 888, 918, 939, 987, 1011, 1029, 1038, 1080, 1182, 1260, 1266, 1281
Offset: 1

Views

Author

Keywords

Comments

Every term is a multiple of 3.
Numbers k such that 100*k+11 and 100*k+13 are prime. - Chai Wah Wu, Jan 20 2022

Examples

			311, 2111, 2711, 7211, and 9011 are terms of A001359.
		

Crossrefs

Programs

  • Maple
    terms := proc(n)
       local k, p, L:
       k, L := 0, []:
       while numelems(L) < n do
          k := k+1:
          p := parse(cat(k, 11)):
          if isprime(p) and isprime(p+2) then L := [op(L), k]: fi: od:
       L: end:
  • Mathematica
    Select[Range[1282], AllTrue[# + {0, 2}, PrimeQ] &[100 # + 11] &] (* Michael De Vlieger, Dec 21 2021 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A350247_gen(startvalue=3): # generator of terms >= startvalue
        for n in count(max(3,startvalue+(3-startvalue%3)%3),3):
            if isprime(100*n+11) and isprime(100*n+13):
                yield n
    A350247_list = list(islice(A350247_gen(),20)) # Chai Wah Wu, Jan 20 2022

A359638 a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have exactly n prime factors, counted with multiplicity.

Original entry on oeis.org

601, 1429, 81547, 248749, 27140749, 310314157, 3566181247
Offset: 3

Views

Author

Hugo Pfoertner, Jan 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a359638(maxp) = {my (k=3, pp=3); forprime (p=5, maxp, my (mi=oo, ma=0); if (p-pp>2, for (j=pp+1, p-1, my(mo=bigomega(j)); if(mo
    				

A359641 a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have exactly n odd prime factors, all with exponent 1.

Original entry on oeis.org

307, 8929, 992263, 229658167, 28674536239
Offset: 2

Views

Author

Hugo Pfoertner, Jan 17 2023

Keywords

Examples

			a(3) = 8929: 8930 = 2*5*19*47, 8931 = 3*13*229, 8932 = 2^2*7*11*29;
a(6) = 28674536239: a(6)+1 = 2^4*5*7*31*43*107*359, a(6)+2 = 3*13*23*151*269*787, a(6)+3 = 2*11*17*19*37*191*571.
		

Crossrefs

Programs

  • PARI
    obi(x,m=0) = {my (x2=x>>valuation(x,2), o=omega(x2)); if (o2, for (j=pp+1, p-1, my (mo=obi(j)); if (mo
    				

A362941 Numbers of the form (p+1)*(p+3) where (p,p+2) is a twin prime pair (cf. A001359).

Original entry on oeis.org

24, 48, 168, 360, 960, 1848, 3720, 5328, 10608, 11880, 19320, 22800, 32760, 37248, 39600, 52440, 58080, 73440, 80088, 97968, 121800, 177240, 187488, 214368, 273528, 326040, 361200, 383160, 413448, 436920, 657720, 677328, 687240, 737880, 779688, 1042440, 1067088, 1104600
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2023, following a suggestion from Jean-Claude Babois

Keywords

Crossrefs

Programs

  • Mathematica
    ((# + 1)*(# + 3)) & /@ Select[Prime[Range[200]], PrimeQ[# + 2] &] (* Amiram Eldar, Sep 10 2023 *)

Formula

a(n) = A108604(n) - 1. - Amiram Eldar, Sep 10 2023

A371896 a(n) is the length of the uninterrupted sequence of primes generated by the polynomial f(x) = x^2 + x + p for x=0,1,..., where p=A001359(n).

Original entry on oeis.org

2, 4, 10, 16, 2, 40, 2, 2, 4, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 7, 2, 3, 2, 5, 2, 4, 4, 6, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Peter Rowlett, Apr 11 2024

Keywords

Comments

p=A001359(n) is the smaller prime of a twin prime pair so that f(0) = p and f(1) = p+2 are both primes so a(n) >= 2 and this sequence is the terms >= 2 in A208936.

Examples

			For n=6, p = A001359(n) = 41 and f(x) = x^2 + x + 41 is Euler's polynomial which generates primes f(x) for x=0,1,2,...,39, which is 40 terms so a(6) = 40 (cf. A202018).
		

References

  • L. Euler, Nouveaux Mémoires de l'Académie royale des Sciences, 1772, p. 36.

Crossrefs

Programs

A375775 For n >= 1, a(n) is the largest k >= 1 such that A001359(n) + i*(i + 1) is prime for all i from 1 to k.

Original entry on oeis.org

1, 3, 9, 15, 1, 39, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 4, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 6, 1, 2, 1, 4, 1, 3, 3, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Aug 27 2024

Keywords

Comments

Record values of k for n = 1,2,3,4,6, i.e., for primes 3,5,11,17,41. What is the next record value of k if it exists ?
From Robert Israel, Sep 27 2024: (Start)
Dickson's conjecture implies that the sequence should be unbounded. However, terms > 39 are expected to be extremely rare. For 7 <= n <= 3*10^6 the only term > 9 is a(740969) = 10. (End)

Examples

			n = 1: A001359(1) = 3, 3 + 2 = 5, 3 + 6 is not a prime, thus k = 1.
n = 2: A001359(2) = 5, 5 + 2 = 7, 5 + 6 = 11, 5 + 12 = 17, 5 + 20 is not a prime, thus k = 3.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime, {seq(i,i=3..4000,2)}):
    Twins:= Primes intersect map(`-`,Primes,2):
    f:= proc(n) local i;
         for i from 1 do if not isprime(n+i*(i+1)) then return i-1 fi od
    end proc:
    map(f, Twins); # Robert Israel, Sep 27 2024
  • Mathematica
    s[n_] := If[PrimeQ[n] && PrimeQ[n + 2], Module[{i = 1}, While[PrimeQ[n + i*(i + 1)], i++]; i - 1], Nothing]; Array[s, 3500] (* Amiram Eldar, Aug 27 2024 *)
  • PARI
    \\ uses A001359 PARI code
    a(n) = my(p=A001359(n)); for (k=1, oo, for (i=1, k, if (!isprime(p+i*(i + 1)), return(k-1)))); \\ Michel Marcus, Aug 27 2024
    
  • PARI
    f(p) = for (k=1, oo, for (i=1, k, if (!isprime(p+i*(i + 1)), return(k-1))));
    lista(nn) = my(v = select(x->isprime(x+2), primes(nn))); apply(f, v); \\ Michel Marcus, Aug 27 2024

A093326 Duplicate of A001359.

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 25 2004

Keywords

Comments

Name was: Primes p such that (p+p')/2+1 is a prime, where p' is the next prime after p.

Programs

  • PARI
    lista(nn) = {forprime(p=3, nn, if (isprime(1+(p + nextprime(p+1))\2), print1(p, ", ")););} \\ Michel Marcus, Jun 03 2013

Extensions

After correction a duplicate of A001359, Michel Marcus, Jun 03 2013

A097972 Least m such that both p|m and p+2|m+2 for twin prime pairs (p,p+2) (p=A001359).

Original entry on oeis.org

18, 40, 154, 340, 928, 1804, 3658, 5254, 10504, 11770, 19180, 22648, 32578, 37054, 39400, 52210, 57838, 73168, 79804, 97654, 121450, 176818, 187054, 213904, 273004, 325468, 360598, 382540, 412804, 436258, 656908, 676504, 686410, 737020, 778804
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Examples

			For instance, (a(4), a(4)+2), i.e., (340=17*20, 342=19*18) is the smallest pair whose elements are respectively divisible by the 4th twin prime pair (17, 19).
		

Programs

  • Mathematica
    lm[{a_,b_}]:=Module[{k=a+1},While[!Divisible[k+2,b]||!Divisible[k,a],k++];k]; lm/@Select[Partition[Prime[Range[200]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Jun 06 2021 *)

Formula

a(n)=p*(p+3), with p=A001359.
Previous Showing 51-60 of 901 results. Next